- 相关推荐
高中感悟作文800字
在平日的学习、工作和生活里,大家一定都接触过作文吧,根据写作命题的特点,作文可以分为命题作文和非命题作文。那么你有了解过作文吗?以下是小编为大家收集的高中感悟作文800字,欢迎大家借鉴与参考,希望对大家有所帮助。
高中感悟作文800字1
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的'过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。
高中感悟作文800字2
一、学习目标:
1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;
2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;
3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;
5.在理解的'基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
二、学习难点:
1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
2.角的意义;射线、直线和线段三者之间的关系;
3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;
4.初步认识平行线与垂线;理解永不相交的含义;
5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。
三、知识点概括总结:
1.亿以内的数的认识:
十万:10个一万;
一百万:10个十万;
一千万:10个一百万;
一亿:10个一千万。
2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
3.数级分类:
(1)四位分级法:即以四位数为一个数级的分级方法。
我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。
(2)三位分级法:即以三位数为一个数级的分级方法。
这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。
这就说明计数单位和数位的概念是不同的。
5.数的产生:
阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
高中感悟作文800字3
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的`过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
高中感悟作文800字4
角:
(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的符号:∠
角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)
平行:
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
垂直:
两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
平行四边形:
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
梯形:
梯形是指一组对边平行而另一组对边不平行的`四边形。
平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
除法:
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
高中感悟作文800字5
棱锥:棱锥是小学数学的基础内容,小学毕业试题中分值约为4分,多以选择题,填空题,判断题的形式出现,难易度属于简单。近几年主要考察:①棱锥的体积问题。②棱锥的侧面积问题。突破方法:牢固掌握有关棱锥的概念,边角之间的关系。这个要通过一定量的练习来掌握。
认识位置与方向:认识位置与方向是小学数学的基础内容,小学毕业试题中分值约为3-6分,多以选择题,填空题,简答题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①给出三视图,说出组成物体最少或最多立方体的个数。②给出物体,画出三视图。突破方法:①平时注意积累。②熟练掌握三视图的画法。
图形的直观认识:图形的直观认识是小学数学的基础内容,小学毕业试题中分值约为6-12分,多以选择题,填空题,证明题的形式出现,难易度属于中等。主要考察一下几个方面:①圆的问题,多数是计算题。②三角形的计算问题。突破方法:①对圆的各个性质熟记,能简单画图。②熟练掌与三角形有关的性质等等。
直线和线段:直线和线段是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①线段长度的计算。②数轴上点的距离问题。突破方法:①掌握有关线段的比,线段的中点的概念。②熟练掌握数轴概念。
角的初步认识:角的初步认识是小学数学的基础内容,小学数学试题中分值约为3-6分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①角的分类。②角的计算。突破方法:①牢固掌握有关角的概念。②熟练掌握角的计算问题,特别是是多个角的问题。
长方形与正方形:长方形与正方形是小学数学的基础内容,小学毕业试题中分值约为5-10分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①面积和周长问题。②体积,边长问题。突破方法:①牢固掌握有关长方形与正方形的概念:如边,对边,角等,特别是对角线的概念。②熟练掌握长方形与正方形的各种性质。
平行四边形:平行四边形是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下两个个方面:①平行四边形的周长与面积。②等腰梯形的周长和面积。突破方法:①牢固掌握有关平行四边形的性质。②等腰梯形的性质等等。三角形:三角形是小学几何的基础内容,也是最重要的部分之一。小学试题中分值约为7-13分,证明题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①三角形的内角和,三角形的外角和,三角形的外角等等。②多边形的内角和及组合图形等等。突破方法:①牢固掌握有三角形的概念:如内角和,外角和,外角等,特别是三角形的各边之间的关系。②熟练掌握多边形的内角和,正多边形有关角的运算。在证明过程中特别注意步骤的合理性。
圆:圆是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的.形式出现,难易度属于中等。近几年主要考察一下几个方面:①圆的面积。②圆的周长,有时用会降低题目的难度。突破方法:①牢固掌握有关圆的性质。②熟练掌握扇形,环形的面积公式。
轴对称图形:轴对称图形是小学数学基础内容,小学毕业试题中分值约为4分,多以选择题,判断题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①图形有几条对称轴。②轴对称和中心对称的综合应用。突破方法:①牢固掌握有关轴对称图形的概念。②平时注意积累,会区分轴对称图形和中心对称图形。
作图题(操作题):作图题(操作题)是小学数学的基础内容,小学毕业试题中分值约为6分,多以选择题,填空题,简答题的形式出现,难易度属于难,近几年分值由增大的趋势。近几年主要考察一下几个方面:①图形的旋转问题。②影长问题。③平移图像的问题。突破方法:作图题试题开放,联系实际,要求学生进行多方位,多角度,多层次的探究,考查了学生思维的灵活性,发散性,创新性,平时注意动手总结。
扩展阅读:
高中感悟作文800字6
一生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的.联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
高中感悟作文800字7
1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。
2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的`概念的理解。
3.体会数概念与现实生活的密切联系。
4.认识各种面值的人民币,并会进行简单的计算。
5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。
6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。
高中感悟作文800字8
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
学好数学的`方法和技巧总结
主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
让数学课学与练结合
在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
单项式书写格式
1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
2、π是常数,因此也可以作为系数。它不是未知数。
3、若系数是带分数,要化成假分数。
4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。
5、在单项式中字母不可以做分母,分子可以。
6、单独的数“0”的系数是零,次数也是零。
7、常数的系数是它本身,次数为零。
8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
高中感悟作文800字9
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的`分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
高中感悟作文800字10
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的'换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。
的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。
的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式被减数=减数+差
和=加数+另一个加数
减数=被减数—差
加数=和—另一个加数
差=被减数—减数
符号/是什么意思数学
/在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
实数知识点
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
高中感悟作文800字11
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的.周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
高中感悟作文800字12
第一单元 数据整理与收集
1.学会用“正”字记录数据。
2.会数“正”,知道一个“正”字代表数量5。
3.根据统计表,会解决问题。
4.数据收集---整理---分析表格。
第二单元 表内除法(一)
1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
例:24本练习本,平均分给6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
例:24本练习本,每人4本,能分给多少人?
列式:24÷4=6
3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
例如:12÷4=3读作(12除以4等于3)
例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。
4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)
5.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
例:用“三八二十四”这句口诀
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
计算方法:12÷4=( )时,想:( )四十二,所以商是( ).
6.解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、
因数×因数=积、一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。
(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)
(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
(记住:平移只能上下移动或左右移动)
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)
(一)填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、教室门的打开和关闭,门的运动是( )现象。
A.平移 B旋转 C平移和旋转
3、下面( )的运动是平移。
A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠
第四单元 表内除法(二)
这单元主要是考口算题。有以下几种形式:
1、用7、8、9的乘法口诀求商
求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。
例.直接口算:28÷4 8÷8
2、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );
第五单元 混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
请画出先算哪一步,再算哪一步(并标上1和2)
1、同级运算的类型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同级运算的类型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。
例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________
5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?
先算____________________再算____________________
例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?
6.练习十三 第4题 (重点)
1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的`还要烤几次?
2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?
3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?
4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六单元 有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
例:43÷7=()…( )余数可能是( )或者余数最大是( )
(2)至少问题(进一法):商+1
例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。
(3)最多问题(去尾法)
例:小丽有10元钱,买3元一个的面包,最多能买几个?
课例:
1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
第七单元 万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如453 < 1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219
补充:
1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。
3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。
例:2647=( )+( )+( )+( )
4、用估算策略解决问题。
96页 例13(估大)
练习19 第8题(估小)
第八单元 克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10两、1两=50克)
5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
高中感悟作文800字13
四个公式:
两个公式:
①增加量(减少量)=原来的量×增加的百分数(减少的百分数)
②现在的量=原来的量±增加量(减少量)
求增加百分之几?减少百分之几?
公式:
增加百分之几=增加的部分÷单位1
减少百分之几=减少的部分÷单位1
例如:
1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之几:5÷45=
2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之几:5÷45=
3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的`,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:50—5=45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之几:5÷45=
4、“减少百分之几与增加百分之几”的解题方法完全相同。
5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几“等。
与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分几”等。
高中感悟作文800字14
第一单元 测量
1、在生活中,测量比较短的物品,可以用(毫米、厘米、分米 )做单位;测量比较长的物体,常用( 米 )做单位;测量比较长的路程一般用( 千米 )做单位,千米也叫( 公里 )。10个100米就是1千米,1千米(公里)=1000米。
2、1厘米的长度里有( 10 )小格,每个小格的长度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的长度单位。1厘米=10毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、10厘米的长度就是1分米,因此1分米=10厘米。1米=10分米。
5、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
6、长度单位的关系式有:
① 进率是10
1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米
10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米
② 进率是100
1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米
③ 进率是1000
1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里
7、当我们表示物体有多重时,通常要用到(质量单位 )。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。如:3吨=3000千克 5000千克=5吨
7、(相邻)质量单位进率是1000 。
1 吨 = 1000千克 1千克=1000克
1000千克 = 1 吨 1000克=1千克
第二单元 万以内的加法和减法(二)
1、笔算加、减法要注意:
(1)相同数位要对齐;
(2)从个位算起;
(3)哪一位上的数相加满十,就向前一位进1;哪一位上的数不够减,就从前一位退1作十再减。
2、估算的方法:
结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数范围。
3、加、减法验算的方法:
(1)加法的验算:
①交换加数的位置再加一遍,看看两次相加的和是不是相同;
②用“和”减去“其中一个加数”,看看结果是不是等于“另一个加数”。
(2)减法的验算:
①用“被减数”减去“差”,看看结果是不是等于“减数”;
②用“差”加“减数”,看看结果是不是等于“被减数”。
第三单元 四边形
1、由4条直的边和4个角组成的图形叫做四边形。
2、四边形的特点:有四条直的边;有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形都是特殊的平行四边形。
6、平行四边形的特点:对边相等、对角相等。平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的'长度,就是它的周长。
8、要求长方形的周长必须知道长方形的(长)和(宽);要求正方形的周长必须知道正方形的(边长)。
9、公式。
长方形的周长 = (长+宽)×2 长方形的长 = 周长÷2-宽 长方形的宽 = 周长÷2-长
正方形的周长 = 边长×4 正方形的边长 = 周长÷4
第四单元 有余数的除法
1、余数和除数之间的关系:进行有余数的除法计算时,结果中的余数一定要比除数小。
2、公式。
被除数 =商×除数+余数 除数 = (被除数-余数)÷商 商 = (被除数-余数)÷除数
第五单元 时分秒
1、钟面上有3根针,它们是(时针)、(分针)和(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有( 12 )个数字,( 12 )个大格,( 60 )个小格;每两个数间是( 1 )个大格,也就是( 5 )个小格。
3、时针走1大格是( 1 )小时;分针走1大格是( 5 )分钟,走1小格是( 1 )分钟;秒针走1大格是( 5 )秒钟,走1小格是( 1 )秒钟。
4、时针走1大格,分针正好走( 1 )圈,分针走1圈是( 60 )分,也就是( 1 )小时。
5、分针走1小格,秒针正好走( 1 )圈,秒针走1圈是( 60 )秒,也就是( 1 )分钟。
6、时针从一个数走到下一个数是( 1小时 )。分针从一个数走到下一个数是( 5分钟)。秒针从一个数走到下一个数是( 5秒 )。
7、公式。
1时= 60分 1分= 60秒 半时= 30 分 60分=1时 60秒=1分 30 分=半时
8、时间单位间的简单换算。
例如:2时=( )分
因为1时=60分,2时有2个60分,2×60=120,所以2时=(120)分。
例如:180秒=( )分
因为60秒=1分,180秒里面有3个60秒,所以180秒=(3)分。
例如:1分35秒=( )秒
因为1分=60秒,60+35=95,所以1分35秒=(95)秒。
9、计算简单的经过时间:经过的时间=结束的时刻-开始的时刻。
例如:小明晚上7:30开始写作业,8:40写完作业,小明完成作业用了多长时间?
8:40-7:30=1小时10分
第六单元 多位数乘一位数
1、口算。
整十、整百、整千的数乘一位数,可以先把题目转化成一位数乘一位数,直接用乘法口诀来算,算出积后,再看因数末尾共有几个0,就在积的末尾添上几个0。
2、多位数乘一位数的计算方法:
计算两、三位数乘一位数,都是把这个多位数的每个数位上的数依次乘一位数。哪一位上的乘积满几十,就要向前一位进几。
3、0和任何数相乘都得0。
4、多位数乘一位数的估算。
把因数中的两位数或三位数看成和它最接近的整十、整百的数来与一位数相乘。
如:48×9≈ 可以这样想:因为48接近50,50×9=450,所以48×9≈450
第七单元 分数的初步认识
1、分数的初步认识:
(1)几分之一:把一个物体或图形平均分成几份,每份就是它的几分之一。
(2)几分之几:有几个几分之一,就是几分之几。
(3)分数的表示方法和各部分的名称:
2 ……分子(表示取了其中的几份)
……分数线(表示平均分)
5 ……分母(表示平均分成了几份)
第八单元 可能性
1、确定现象与不确定现象。
(1)确定现象:事件发生的结果是确定的。(如:太阳不可能从西方升起;太阳每天从东方升起。)
(2)不确定现象:事件发生的结果无法确定。(如:下星期一会下雨。)
2、事件发生与否有三种情况。
(1)一定(如:正方体一定有6个面。)
(2)可能(如:明天可能是晴天。)
(3)不可能(如:地球不可能绕着月球转。)
3、事件发生的可能性是有大小的。
例如:盒子里有10个红球,3个白球,红球与白球的数量不相等,那么摸到红球的可能性与摸到白球的可能性是不一样的。红球多,摸到红球的可能性较大;白球少,摸到白球的可能性就小。
第九单元 数学广角
简单的排列与组合:
在解决问题时,要弄清楚实际问题与事物的顺序有没有关系,做到既不重复也不遗漏。
1、与顺序有关的是排列数。例如:用数字卡片组数、排队、站不同位置照相、扮演不同的角色等问题。
2、与顺序无关的是组合数。例如:衣服和早餐的搭配、行走路线的选择、两两通话、两两握手、安排比赛场次等问题。
高中感悟作文800字15
1、一个因数是两位数的乘法法则
(1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
(2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
(3)、然后把两次乘得的数加起来。
2、除数是两位数的除法法则
(1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,(2)、除到被除数的哪一位就在哪一位上面写商;
(3)、每求出一位商,余下的数必须比除数小。
3、万级数的读法法则
(1)、先读万级,再读个级;
(2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;
(3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
4、多位数的读法法则
(1)、从高位起,一级一级往下读;
(2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
(3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
8、同分母分数相加减,分母不变,只把分子相加减。
9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
10、分数乘以整数,用分数的分子和整数相乘的'积作分子,分母不变。
11、异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
12、围成一个图形所有边长的总和就是这个图形的周长。
13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
17、积=因数×因数 一个因数=积÷另一个因数。
18、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
19、质量单位及进率:
吨、千克、公斤、克
1吨=1000千克
1千克=1公斤
1千克=1000克
20、体积容积计量单位及进率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
21、长度计量单位及进率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米
1厘米=10毫米
22、长方形面积=长×宽,计算公式S=ab
23、正方形面积=边长×边长,计算公式S=a×a=a2
24、长方形周长=(长+宽)×2,计算公式C=(a+b)×2
25、正方形周长=边长×4,计算公式C=4a
26、平行四边形面积=底×高,计算公式S=ah
27、三角形面积=底×高÷2,计算公式S=a×h÷2
28、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2
29、长方体体积=长×宽×高,计算公式V=abh
30、圆的面积=圆周率×半径平方,计算公式V=πr2
31、正方体体积=棱长×棱长×棱长,计算公式V=a3
32、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh
34、圆柱的体积=底面积×高,计算公式V=sh
35、比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
小学数学的学习方法
1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。
5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
【高中感悟作文800字】相关文章:
高中感悟作文11-15
感悟高中作文11-11
高中感悟收获作文04-14
高中感悟军训作文02-24
感悟人生高中作文04-12
感悟军训高中优秀作文08-08
感悟生命作文高中03-24
高中优秀作文:感悟生命02-11
对高中生活感悟的作文08-31