- 相关推荐
高中数学立体几何知识点总结最新
总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,因此好好准备一份总结吧。总结怎么写才是正确的呢?以下是小编精心整理的高中数学立体几何知识点总结最新,仅供参考,欢迎大家阅读。
高中数学立体几何知识点总结最新1
1、平面的基本性质:
掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2、空间两条直线的位置关系:
平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3、直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的'证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理。 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量。如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线。
4、平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。
高中数学立体几何知识点总结最新2
数学知识点1
柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到
截面距离与高的比的平方。
(3)棱台:
几何特征:
①上下底面是相似的平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图
是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的'几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
数学知识点2
空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3
空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
【高中数学立体几何知识点总结最新】相关文章:
立体几何的知识点总结03-29
高中立体几何知识点总结01-15
高一数学立体几何知识点总结08-03
高中立体几何知识点总结(通用5篇)02-10
高中数学导数知识点总结03-29
高中数学知识点总结09-29
高中数学几何知识点总结10-31
高中数学数列知识点总结04-24
高中数学知识点总结02-20