高二数学知识点

时间:2023-04-25 10:54:26 秀雯 总结 我要投稿

高二数学知识点大全

  在学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。还在为没有系统的知识点而发愁吗?下面是小编帮大家整理的高二数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

高二数学知识点大全

  高二数学知识点

  (1)总体和样本:

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。

  就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

  高二数学知识点

  一、不等式的性质

  1.两个实数a与b之间的大小关系

  2.不等式的性质

  (4) (乘法单调性)

  3.绝对值不等式的性质

  (2)如果a>0,那么

  (3)|ab|=|a||b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的证明

  1.不等式证明的依据

  (2)不等式的性质(略)

  (3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

  ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

  2.不等式的证明方法

  (1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.

  用比较法证明不等式的步骤是:作差——变形——判断符号.

  (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

  (3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

  证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

  三、解不等式

  1.解不等式问题的分类

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化为一元一次或一元二次不等式的不等式.

  ①解一元高次不等式;

  ②解分式不等式;

  ③解无理不等式;

  ④解指数不等式;

  ⑤解对数不等式;

  ⑥解带绝对值的不等式;

  ⑦解不等式组.

  2.解不等式时应特别注意下列几点:

  (1)正确应用不等式的基本性质.

  (2)正确应用幂函数、指数函数和对数函数的增、减性.

  (3)注意代数式中未知数的取值范围.

  3.不等式的同解性

  (5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)

  (6)|f(x)|>g(x)

  ①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;

  ②与g(x)<0同解.

  (9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同

  高二数学知识点

  ●不等式

  1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、两类恒成立问题图象法——恒成立,则=?

  ★★★★分离变量法——在[1,3]恒成立,则=?(必考题)

  4、线性规划问题

  (1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界

  (2)目标函数改写:(注意分析截距与z的关系)

  (3)平行直线系去画

  5、基本不等式的形式和变形形式

  如a,b为正数,a,b满足,则ab的范围是

  6、运用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的最小值(不要忘记交代是什么时候取到=!!)

  一个非常重要的函数——对勾函数的图象是什么?

  运用对勾函数来处理下面问题的最小值是

  7、★★两种题型:

  和——倒数和(1的代换),如x,y为正数,且,求的最小值?

  和——积(直接用基本不等式),如x,y为正数,则的范围是?

  不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,则的范围是?

  高二数学知识点

  平面向量

  戴氏航天学校老师总结加法与减法的代数运算:

  (1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);

  两个向量共线的充要条件:

  (1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=

  (2) 若=( ),b=( )则‖b .

  平面向量基本定理:

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,使得= e1+ e2

  高二数学知识点

  等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

  反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

  反函数求导方法

  若F(X),G(X)互为反函数,

  则:F(X)_(X)=1

  E.G.:y=arcsin_siny

  y_=1(arcsinx)_siny)=1

  y=1/(siny)=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-x^2)

  其余依此类推

  高二数学知识点

  一、导数的应用

  1、用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

  学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2、生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益最大问题

  3)面积、体积最(大)问题

  二、推理与证明

  1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

  通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

  四、坐标平面上的直线

  1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

  2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

  3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

  五、圆锥曲线

  1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

  2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

  上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

  3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

  高二数学知识点

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  高二数学知识点

  1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

  2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

  试验的全部结果所构成的区域长度(面积或体积)

  3、几何概型的特点:

  1)试验中所有可能出现的结果(基本事件)有无限多个;

  2)每个基本事件出现的可能性相等、

  4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

  通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

  高二数学知识点

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

  AB-AC=CB. 即“共同起点,指向被减”

  a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  数与向量的乘法满足下面的运算律

  结合律:(λa)·b=λ(a·b)=(a·λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:

  ① 如果实数λ≠0且λa=λb,那么a=b。

  ② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的数量积

  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:a·b=x·x'+y·y'。

  向量的数量积的运算率

  a·b=b·a(交换率);

  (a+b)·c=a·c+b·c(分配率);

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

  高二数学知识点

  空间两条直线只有三种位置关系:平行、相交、异面

  按是否共面可分为两类:

  (1)共面:平行、相交

  (2)异面:

  异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

  异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

  两异面直线所成的角:范围为(0°,90°)esp。空间向量法

  两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法

  若从有无公共点的角度看可分为两类:

  (1)有且仅有一个公共点——相交直线;

  (2)没有公共点——平行或异面

  直线和平面的位置关系:

  直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

  ①直线在平面内——有无数个公共点

  ②直线和平面相交——有且只有一个公共点

  直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  空间向量法(找平面的法向量)

  规定:

  a、直线与平面垂直时,所成的角为直角

  b、直线与平面平行或在平面内,所成的角为0°角

  由此得直线和平面所成角的取值范围为[0°,90°]

  最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

  三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

  直线和平面垂直

  直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

  直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

  直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ③直线和平面平行——没有公共点

  直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

  直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

  直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

【高二数学知识点】相关文章:

高二数学知识点07-15

高二的数学的知识点总结04-22

数学高二知识点总结03-07

高二数学的知识点总结03-08

高二数学的知识点整理02-24

高二数学知识点总结02-19

数学高二知识点总结归纳12-29

高二数学知识点总结12-18

高二数学知识点总结08-04

高二数学下册知识点总结03-30