高二数学必修2知识点总结

时间:2024-07-17 19:20:44 毅霖 总结 我要投稿
  • 相关推荐

高二数学必修2知识点总结

  你可能体验过很多美妙的事情,比如抚慰心灵的乐曲,赏心悦目的画作,动人心弦的诗歌,不过有一样东西,能够包含上面所有的内容,那就是数学。下面是小编整理的高二数学必修2知识点总结,欢迎来参考!

高二数学必修2知识点总结

  高二数学必修2知识点总结 1

  一般我们把不含任何元素的集合叫做空集。

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N*;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的`自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

  它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高二数学必修2知识点总结 2

  排列组合

  排列P——————和顺序有关

  组合C———————不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法。"排列"

  把5本书分给3个人,有几种分法"组合"

  1、排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。

  p(n,m)=n(n—1)(n—2)……(n—m+1)=n!/(n—m)!(规定0!=1)。

  2、组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的.个数,叫做从n个不同元素中取出m个元素的组合数。用符号

  c(n,m)表示。

  c(n,m)=p(n,m)/m!=n!/((n—m)!_!);c(n,m)=c(n,n—m);

  3、其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n—r)!。

  n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为

  n!/(n1!_2!_……_k!)。

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k—1,m)。

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n—1)……(n—m+1);Pnm=n!/(n—m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n—m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn—m

  2008—07—0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N—元素的总个数R参与选择的元素个数!—阶乘,如9!=9________

  从N倒数r个,表达式应该为n_n—1)_n—2)……(n—r+1);

  因为从n到(n—r+1)个数为n—(n—r+1)=r

【高二数学必修2知识点总结】相关文章:

高中数学必修2知识点总结11-22

高中数学必修2知识点总结11-30

数学必修三知识点总结11-24

高二物理必修二知识点总结12-14

生物高二必修二知识点总结03-29

高二物理必修二知识点总结04-23

高二语文知识点总结必修三12-16

高中数学必修2知识点总结(4篇)11-29

高中数学必修2知识点总结4篇11-29

必修三数学知识点总结02-05