高一力学知识点总结

时间:2024-11-25 18:51:14 林惜 总结 我要投稿
  • 相关推荐

高一力学知识点总结

  在学习中,大家都没少背知识点吧?知识点在教育实践中,是指对某一个知识的泛称。哪些才是我们真正需要的知识点呢?以下是小编收集整理的高一力学知识点总结,仅供参考,希望能够帮助到大家。

高一力学知识点总结

  力学的建立

  力学的演变以追溯到久远的年代,而物理学的其它分支,直到近几个世纪才有了较大的发展,究其原因,是人们对客观事物的认识规律所决定的。在日常生活和生产劳动中,首先接触最多的是宏观物体的运动,其中最简单。最基本的运动是物体位置的变化,这种运动称之为机械运动。由此我们注意到,力学建立的原动力就是源于人们对机械运动的研究,亦即力学的研究对象就是机械运动的客观规律及其应用。了解了这些,可以对力学的主脉络有了一条清晰的线索,就是对于物体运动规律的研究。首先要涉及到物体在空间的位置变化和时间的关系,继而阐述张力之间的关系,然后从运动和力出发,推广并建成完整的力学理论。正是要达到上述目的,我们在研究过程中,就需要不断地引入新的物理概念和方法,此间,由“物”及“理”的思维过程和严密的逻辑揄体系,逐步得以完善和体现。明确了以上观点,可以使我们在学习及复习过程,不会生硬地接受。机械地照搬,而是自然流畅地水到渠成。

  让我们走入力学的大门看一看,它的殿堂是怎样的金碧辉煌。静力学研究了物体最简单的状态:简单的状态:静止或匀速直线运动。并且阐述了解决力学问题最基本的方法,如受力情况的分析以及处理方式;力的合成。力的分解和正交分解法。应当认识到,这些方法是贯穿于整个力学的,是我们研究机械运动规律的不可缺少的手段。运动学的主要任务是研究物体的运动,但并不涉及其运动的原因。牛顿运动定律的建立为研究力与运动的关系奠定了雄厚的基础,即动力学。至此,从理论上讲各种运动都可以解决。然而,物体的运动毕竟有复杂的问题出现,诸如碰撞。打击以及变力作用等等,这类问题根本无法求解。力学大厦的建设者们,从新的角度对物体的运动规律做了全面的。深入的讨论,揭示了力与运动之间新的关系。如力对空间的积累-功,力对时间的积累-冲量,进而获得了解决力学问题的另外两个途径-功能关系和动量关系,它们与牛顿运动定律一起,在力学中形成三足鼎立之势。

  力学概念的引入

  前面曾经提到过,力学的研究对象是机械运动的客观规律及其应用。为达此目的,我们需要不断地引入许多概念。以运动学部分为例,体会一下力学概念引入的动机及方法,这对力学的复习无疑是大有裨益的。

  让我们研究一下行驶在平直公路上的汽车。首先一个问题就是,怎样确定汽车在不同时刻的位置。为了能精确地确定汽车的位置,我们可将汽车看作一个点,这样,质点的概念随之引入。同时,参照物的引入则是水到渠成的,即在参照物上建立一个直线坐标,用一个带有正负号的数值,即可能精确描述汽车的位置。而后由于汽车位置要不断地发生变化,位置的改变-位移亦被引入,至于速度的引入在此就不再赘述。在学习物理的过程中,这类问题可以说比比皆是。因此,只有搞清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。而在物理中,引入概念的方法,充分体现了物理学的研究手段,例如:用比值定义物理量。该方法在整个物理学中具有很典型的意义。

  把握一个概念的来龙去脉和准确定义显然是非常重要的,可以避免一些相似概念的混淆。如功与冲量。动能与动量。加速度与速度等等。所谓学习物理要“概念清楚”,就是这个含意。

  力学规律的运用

  物理概念的有机组合,构成了美妙的物理定律。因此,清晰的概念是掌握一个定律的重要前提。如牛顿第二定律就是由力。质量及加速度三个量构成的。在力学中重要的定律定理有:牛顿一。二。三定律;机械能守恒定律;动量守恒定律;万有引力定律;动量定理和动能定理。掌握定律并非以记忆为标准,重要的是会在实际问题中加以运用。如牛顿第二定律,从形式上看来并不复杂,然而很多同学在解决连结体问题时,却总是把握不好这三个量对研究对象之间的“对应关系”。在此可举一例。水平光滑轨道上有一小车,受一恒定水平拉力作用,若在小车上固定一个物体时,小车的加速度要减小是何原因?常见的答案显然是:合外力不变,质量变大。然而,若回答合外力变小,是不是正确的呢?这里显然是由于研究对象的选择不同而造成的不同结果。在此,研究对象的确定和公式各量的对应性问题,起着关键的作用,这也恰恰是牛顿第二定律应用时的重要环节。

  运动学规律及动力学关系在解决问题时,也有许多应当注意和思考的地方。如在匀速圆周运动中,我们似乎并未明确指出哪些公式属于运动学关系,哪些属于动力学关系,但在实际问题中却可使人困惑。例如:在一光滑水平面上用绳拴一小球做匀速圆周运动,由公式v=2nr/T可以知道,若增大速率V可以减小周期T.然而卫星绕地球做匀速圆周运动时,我们却不能用增大V的方式来改变周期T,若仅在V=2nr/Th 大做定会百思不得其解。究其原因,还是由于忽略了动力学原因,即前者与后者的最大区别是向心力不同。一个是绳子弹力,它可以以r不变时,任意提供了不同大小的拉力;而另一个是万有引力,当r一定时,其大小也就一定了。在这类问题上,最容易犯的就是片面性的错误。再比如机械能守恒和动量守恒这两条重要的力学定律,我们是否了解了守恒的条件,就可以做到灵活地运用呢?我们知道,机械能守恒的条件是“只有重力做功”,有些人看到某个问题中,重力没有做功,就立刻得出机械能不守恒的结论,如光滑水平面上的匀速直线运动。造成这类错误的原因是,只注意到了物理定律的文字表述,孰不知深刻理解其内涵才是最重要的。如动量守恒定律的内涵,是在满足了守恒条件的情况下,即系统不受外力或外力合力为零,动量只是在系统内部传递,而总动量不变。

  最后谈谈动能定理和动量定理。观察其形式可以发现,每个定理都涉及两个状态量和一个过程量,注意到这一点应是定理正确应用的关键。我们不妨将状态看作一个点,过程看作一条线,在应用时必然是“两点夹一线”,即状态量及过程量,一定要对应,这也是两个定理的相似之处,至于它们的区别,在此就不多讲了。

  由以上的讨论可以看出,对物理定律的应用,绝不能只满足于会用,而应当多方面地体会其深层的含意和适用条件中所包含的物理意义。只有这样,才能达到灵活运用物理规律解题的目的,做到居高临下,以不变应万变。

  逻辑推理在物理中的运用

  逻辑推理在力学中可以说俯拾皆是。严密的逻辑推理,是正确运用物理规律解决问题的必由之路。试举一例:做曲线运动的物体一定受合外力 ,其逻辑推理过程如下:曲线运动的速度方向沿轨迹的切线方向,而曲线切线方向每点是不同的,因此曲线运动的速度方向一定是不断变化的。由于的矢量,所以曲线运动必为变速运动,必然有加速度,由牛顿第二定律可知其必受合外力。当然,实际问题中似乎并非如此繁琐,然而细细地想来又的如此,只是思维过程较为迅速罢了。再举一例:合外力对物体做功不为零,则物体的动量一定发生变化,而物体的动量变化,合外力对物体不一定做功。此命题依然可用逻辑推理说明其正确性。根据动能定理,当合外力做功时,则物体的动能必然发生变化,因此速率发生变化,则动量必然变化。反之支量发生变化,动能不一定变(动量是矢量,动能是标量),则合外力不一定做功。不难看出,清晰地认识概念,牢固地掌握规律,者严密正确的逻辑推理得以完成的重要前提和充足的条件补充。同学们若多留意。多用心,定会受益匪浅。

  动力学知识点总结

  一、直线运动

  (1)匀变速直线运动

  1、平均速度V平=s/t(定义式)

  2、有用推论Vt2—Vo2=2as

  3、中间时刻速度Vt/2=V平=(Vt+Vo)/2

  4、末速度Vt=Vo+at

  5、位移s=V平t=Vot+at2/2=Vt/2t

  6、加速度a=(Vt—Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  7、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  注:(1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt—Vo)/t只是量度式,不是决定式;

  (2)自由落体运动

  1、初速度Vo=0

  2、末速度Vt=gt

  3、下落高度h=gt2/2(从Vo位置向下计算)

  4、推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  (3)竖直上抛运动

  位移s=Vot—gt2/2

  2、末速度Vt=Vo—gt(g=9、8m/s2≈10m/s2)

  3、有用推论Vt2—Vo2=—2gs

  4、上升最大高度Hm=Vo2/2g(抛出点算起)

  5、往返时间t=2Vo/g(从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等性;

  二、曲线运动万有引力

  (1)平抛运动

  水平方向速度:Vx=Vo

  2、竖直方向速度:Vy=gt

  3、水平方向位移:x=Vot

  4、竖直方向位移:y=gt2/2

  5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8、水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  (2)匀速圆周运动

  1、线速度V=s/t=2πr/T

  2、角速度ω=Φ/t=2π/T=2πf

  3、向心加速度a=V2/r=ω2r=(2π/T)2r

  4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5、周期与频率:T=1/f

  6、角速度与线速度的关系:V=ωr

  7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8、主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2、

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  (3)万有引力

  1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2、万有引力定律:F=Gm1m2/r2(G=6、67×10—11Nm2/kg2,方向在它们的连线上)

  3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5、第一(二、三)宇宙速度V1=7、9km/s;V2=11、2km/s;V3=16、7km/s

  6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  三、力学部分

  (1)常见的力

  1、重力G=mg(方向竖直向下,g=9、8m/s2≈10m/s2)

  2、胡克定律F=kx {k:劲度系数(N/m),x:形变量(m)}

  3、滑动摩擦力F=μFN {与物体相对运动方向相反}

  4、静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5、万有引力F=Gm1m2/r2(G=6、67×10—11Nm2/kg2,方向在它们的连线上)

  6、静电力F=kQ1Q2/r2(k=9、0×109Nm2/C2,方向在它们的连线上)

  7、电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8、安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9、洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  (2)动力学(运动和力)

  1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3、牛顿第三运动定律:F=—F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4、共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

  5、超重:FN>G,失重:FN

  6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  (3)功和能(功是能量转化的量度)

  1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2、重力做功:Wab=mghab {m:物体的质量,g=9、8m/s2≈10m/s2,hab:a与b高度差(hab=ha—hb)}

  3、电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa—φb}

  4、电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

  5、功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6、汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

  7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8、电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

  9、焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11、动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12、重力势能:EP=mgh {EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14、动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2—mvo2/2或W合=ΔEK

  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2—mvo2/2)}

  15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=—ΔEP

  注:

  (1)功率大小表示做功快慢,做功多少表示能量转化多少;

  (2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

  (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

  (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化。

【高一力学知识点总结】相关文章:

高中力学知识点总结03-21

工程热力学知识点总结05-15

高一的生物知识点总结10-24

高一英语知识点总结07-01

高一英语的知识点总结08-15

高一英语知识点总结10-06

高一各科知识点总结06-21

高一英语知识点总结10-08

【经典】高一英语知识点总结10-10

高一英语知识点总结【经典】11-18