- 相关推荐
7年级数学知识点总结
在日常的学习中,大家对知识点应该都不陌生吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。掌握知识点是我们提高成绩的关键!以下是小编为大家收集的7年级数学知识点总结,仅供参考,欢迎大家阅读。
7年级数学知识点总结 1
(一)正负数
1、正数:大于0的数。
2、负数:小于0的数。
3、0即不是正数也不是负数。
4、正数大于0,负数小于0,正数大于负数。
(二)有理数
1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2、整数:正整数、0、负整数,统称整数。
3、分数:正分数、负分数。
(三)数轴
1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2、数轴的三要素:原点、正方向、单位长度。
3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1、先定符号,再算绝对值。
2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5、a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2、乘积是1的两个数互为倒数。
3、乘法交换律:ab=ba
4、乘法结合律:(ab)c=a(bc)
5、乘法分配律:a(b+c)=ab+ac
(六)有理数除法
1、先将除法化成乘法,然后定符号,最后求结果。
2、除以一个不等于0的数,等于乘这个数的倒数。
3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(
七)乘方
1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0
3、同底数幂相乘,底不变,指数相加。
4、同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1、先乘方,再乘除,最后加减。
2、同级运算,从左到右进行。
3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
整式
(一)整式
1、整式:单项式和多项式的统称叫整式。
2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3、系数;一个单项式中,数字因数叫做这个单项式的系数。
4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5、多项式:几个单项式的和叫做多项式。
6、项:组成多项式的每个单项式叫做多项式的项。
7、常数项:不含字母的项叫做常数项。
8、多项式的次数:多项式中,次数的项的次数叫做这个多项式的'次数。
9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
如何把握课堂,提高学习效果
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。
单项式书写格式
1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
2、π是常数,因此也可以作为系数。它不是未知数。
3、若系数是带分数,要化成假分数。
4、当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab]写成[-ab]等。
5、在单项式中字母不可以做分母,分子可以。
6、单独的数“0”的系数是零,次数也是零。
7、常数的系数是它本身,次数为零。
8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
7年级数学知识点总结 2
直角梯形
基本定义 有一个角是直角的梯形叫做直角梯形
面积公式 S=(上底+下底)×高÷2
梯形是上下两条边平行的'四边形状,你按照一个对角线可以把它分成两个高相同的三角形,三角形面积公式是“底乘以高除以2”,所以梯形就是:“上底乘以高除以2”+“下底乘以高除以2”=“上底加下底乘以高除以2”
另一个公式:“中位线×高”
基本性质 两底平行且不相等,两腰不平行也不相等,一腰上的两角是直角。
具有特征 在直角梯形ABCD中,AD//BC,∠B=90°,则∠A=90°,∠C+∠D=180°。
重要性质:
直角梯形斜腰的中点到直角腰的二端点距离相等。
7年级数学知识点总结 3
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足。
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
三角形
1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)
②a—b
3、第三边取值范围:a—b
4、对应周长取值范围
若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
5、三角形中三角的关系
(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n—2)
(2)、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段
(1)、三角形的角平分线:
1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)
(2)、三角形的中线:
1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。(重心)
3、三角形的中线把这个三角形分成面积相等的两个三角形
(3)、三角形的高线:
1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)
3、注意等底等高知识的考试
7、相关命题:
1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。
3)任意一个三角形两角平分线的夹角=90+第三角的一半。
4)钝角三角形有两条高在外部。
5)全等图形的大小(面积、周长)、形状都相同。
6)面积相等的两个三角形不一定是全等图形。
7)能够完全重合的两个图形是全等图形。
8)三角形具有稳定性。
9)三条边分别对应相等的'两个三角形全等。
10)三个角对应相等的两个三角形不一定全等。
11)两个等边三角形不一定全等。
12)两角及一边对应相等的两个三角形全等。
13)两边及一角对应相等的两个三角形不一定全等。
14)两边及它们的夹角对应相等的两个三角形全等。
15)两条直角边对应相等的两个直角三角形全等。
16)一条斜边和一直角边对应相等的两个三角形全等。
17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18)一角和一边对应相等的两个直角三角形不一定全等。
19)有一个角是60的等腰三角形是等边三角形。
8、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
9、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
10、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
12、利用三角形全等测距离;
13、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
变量之间的关系
一、理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180—2x。
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三、关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:
a、认真理解图象的含义,注意选择一个能反映题意的图象;
b、从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述。例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等。
九、估计(或者估算)对事物的估计(或者估算)有三种:
1、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数—首数)/次数或相差年数)等等;
2、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3、利用关系式:首先求出关系式,然后直接代入求值即可。
学好数学的方法是什么
1、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、学好数学最基础的就是把课本知识点及课后习题都掌握好。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
10、数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
数学经典学习思维
假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
【7年级数学知识点总结】相关文章:
数学知识点总结11-07
初中数学的知识点总结12-12
初中数学的知识点总结03-11
数学知识点总结整理09-01
初中数学毕业知识点总结07-06
初中数学知识点总结11-03
初中数学几何知识点总结03-01
数学基础知识点总结08-23
高考数学知识点总结02-23
初二数学的知识点总结06-26