- 相关推荐
(集合)高中数学学习方法15篇
在平平淡淡的学习、工作、生活中,学习对大家来说都非常重要,有效的学习方法,能够帮助大家在更短的时间内掌握学习内容。那么,都有哪些实用的学习方法呢?下面是小编整理的高中数学学习方法,欢迎阅读,希望大家能够喜欢。
高中数学学习方法1
一、高中数学快速提分的方式
1、背概念、公式、定理、图像
如果你现在是三四十分的话,你第一件事就是要背上面的这些,现在跟着老师走一轮,那么要把老师提到过的每一个概念,公式定理与图像都背下来,刚开始会很辛苦,毕竟高中数学的一些概念还是比较抽象的,但是小数老师告诉你,你背一段时间后,你会有很明显的变化的!
要求:每个概念公式定理图像都要背下来哦,你可以找你同桌提问你,比如,提问函数,你要知道函数的概念,函数的相关性质都有哪些,这些性质的概念又是什么等。现在你可以不理解,但必须滚瓜烂熟!
注:这是最痛苦的一个阶段哦,加油!
2、背例题老师上课会讲一些例题,那第二步就是要把这个例题背下来,包括题目条件,求解与解法。
达标要求:你能合上课本,自己写出题目条件与求解,并能默写出步骤来!要找到题目中的关键词,也就是题眼,也就是你之前背的概念公式定理图像中的出现的那些词,这才是题眼!因为解题的时候,我们的解题思路从哪来,就是从我们学过的知识转化过来的!
注:这一步相对上一步来说,简单了一点,因为题目是具体的,不抽象,背起来稍微容易一点!但是要注意抓住重点,那就是例题中的题眼!不要只记里面的数字啊,否则,数字换一下,你就不会做了!
3、对例题的每一步转化写上来龙去脉
例题背下来之后,你也能分辨出题目的题眼了,也会了解题步骤了,接下来就要调动你的大脑来思考了!你要把每一步涉及到的公式概念都写出来,比如:求函数的定义域,你记过求定义域的方法,那让你求的定义域时,首先是二次根号下被开放式必须大于等于0,所以有lgx大于等于0,又因为这是一个对数函数,想一想对数函数的图象,找到函数值大于等于0对应的.x值就是此函数的定义域了!
要求:每一步都要弄清楚,你不知道转化的,一定要问,此时可以不计较数量,重视质量就可以了!这个质量是你自己真正能写出来了!
注:数学题逻辑思维比较强,一定要分析每一步,不要感觉自己会了,就不写了!
4、重新做例题(不是把答案背上去哦)
你弄明白之后,接下来就是要真正把他当做一道新题去做了,你完全按照做新题的方法,审题,找到题眼,然后想一想这些题眼该怎么转化,以前自己学过的知识怎么运用,不同知识之间怎么结合,然后一步步的去做这道题,在做题的过程中,还要注意计算的易错点!
二、巩固数学基础的方式
首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。
对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。
此外,想学好数学,大量刷题确实很有必要,但你真的会刷题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。
做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。
高中数学学习方法2
一、精做题
做题不是做得越多越好,而是做得越精越好。怎样才算“精”呢?学会“解剖麻雀”。充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的`语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法 高中数学;一题多解,一题多变,多元归一。
二、做难题
取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。因此,她在复习时坚持有规律地做这类题目。由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。
三、天天做题
熟练解题一定要有量的积累。天天做题就是保证做题的数量的最好方法。同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。
高中数学学习方法3
经过这么多天的学习,对新课程有了更深层次的理解,从理论上得到了充实和提升,开拓了我们的视野。作为高一数学教师,新课程的实施对我们来说更有着非同一般的意义。因此在培训之后我们进行了仔细的讨论,下面是我的一些心得和体会。
一、数学课改的背景:
高中是人生发展的重要阶段,时代的发展对人才培养的规格和目标提了更高的要求。因此,高中课程应能更好地适应时代发展、人的发展和社会的发展。而教材则是数学课程实施的重要组成部分。选择和使用合适的教材是完成教学内容和实现教学目标的重要前提。高水平、高质量的教材对教师、学生、教学过程以及教学结果都起着积极的作用。
二、数学课程“内容标准”解读:
高中数学课分必修和选修。必修课程有5个模块组成;
数学1:集合;函数概念与基本初等函数i
数学2:立体几何初步;平面解析几何初步
数学3:算法初步;统计;概率
数学4:基本初等函数ii;平面上的向量;三角恒等变换
数学5:解三角形;数列;不等式
选修课程有4个系列。必修课程内容确定的原则是:满足未来公民的基本数学要求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。基于这种教学内容安排,应该说高一教学任务最为繁重,要学完四本书,难点集中,周期太长;若高一未打好基础,等到高三复习时恶补是无济于事的。所以如何处理好高一学年的教学,在整个高中阶段显得尤为重要。
三、对教学的思考:
1、更新观念,转变角色。
数学属于全体大众,教师和学生是平等的。因此,教师要由课程知识的施与者变为教育学意义上的交往者。教师要改变使原来内涵丰厚、品位高雅的课程异化为以复制系统知识为目的的大工业生产式的流水作业的做法,不能再以课程知识的拥有者和权威自居。应将“教程”转变为“学程”,将“知识施与”转变为“教育交往”。教师作为全人格和全心灵的交往者,既不视学生为承纳知识的容器,也不被学生视作获取知识的对象和手段,应具有民主理念与生本理念。教师要从“一切为了学生的终身发展”出发,在课程的每个环节中都体现出以生为本、“全人”发展的课程理念。
2、不断实践,转变教学行为。
在实际教学过程中,由于受到传统教学思想以及考试压力的影响,我们在贯彻新课程上面可能或多或少打些折扣,这是我们需要警惕的,只有不断实践,努力将新课程理念运用到实践中,才能不断地提高学生各方面的能力。首先在课堂上,教师的教学应创造一个合适的学习环境,使学生能够主动地建构他们的知识,促使学生在学习过程中,实现新旧知识的有机结合。在整个教学过程和学习过程中,教师是组织者、指导者、促进者。如:创设生活情景,激发学生学习数学的'热情。当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的,才能激发学生学习和解决数学问题的兴趣。同时,在现实问题的解决中表现数学概念,掌握数学方法,形成数学思想,更能促进在以后遇到相关问题时自觉地动用有关数学经验去思想、去解决问题。还有如:多做数学实验,让学生在动手实践中学习。以往的数学课堂教学过于强调接受学习,死记硬背,机械训练,而很少让学生动手,实践。实践证明,若要让学生积极参与,勤于实践,数学上的很多问题还是能够得到很好解决的。特别是在应用题的教学中尤为显得重要,学生普遍反映:听来的容易忘,看到的记不住,只有亲自动手才能学得会。
3、注重形成过程,突出激励机制。
新课程强调过程,强调学生探索新知的经历和获得新知体验。
对于教师而言,课堂教学就应该充分地考虑和体现数学知识的形成过程,把开展探究性学习和研究作为贯穿于课堂教学始终的一条线。同时要不断的鼓励学生、激励学生,使学生增强学习数学的信心。教师要从学生的全面发展和终身发展着眼,使评价不仅要关注学生的学业成绩,而且要发现发展学生的潜能,要将评价重点由终结性转向过程性与形成性,引导学生不仅求“知”,更要求“德”,不但“学好”,更要“好学”,帮助学生认识自我,建立自信,教师要以自己其独具的眼力和襟怀来悦纳学习个体之间的多样性与差异性,要以心灵拥抱心灵,以激情点燃激情,放飞生命的灵思和才情。
四、存在的一些问题:
1、关于初高中教材内容的衔接问题。
现行初中教材中,对于一些常用的知识和方法有许多遗留的内容,如韦达定理、分母有理化、十字相乘法以及三角形四心问题等,而这些内容是我门在高中阶段必须用到的知识点。对于这些内容应如何处理?应该安排何时补充这些内容比较合适?是放在所有新课之前单独讲授还是在讲授有关内容时穿插进来?这些都是在新高一教学中不可避免会碰到的问题。
2、关于新教材该如何把握难度的问题。
新课标实施不久,对新教材的了解和把握还有所欠缺,课程内容要求高,难点集中,习题配置较少;信息技术要求太高,师生负担较重。加上对应的参考资料比较缺乏,现存的资料对教材难度的把握不甚明确,如新旧教材中对于函数定义域和值域这块内容的要求有较大的差别。因此在对教学和考试中的难度的确定的尺度不易把握。
3、关于课时安排较紧的问题。
新课程标准要求高一学生修完一、二、三、四册必修课程,实际需要的总课时必然超过可以给定的总课时,给总的教学任务的完成增加了很大的难度,希望各领导予以关注总而言之,通过本次课改培训,使我们认识到,我们的数学教学应依据课程标准的要求,以人的发展和社会进步为需求,使每个学生获得必要的数学基础知识和基本技能,提高空间想象、抽象概括、运算求解、推理论证、数据处理等基本能力。使学生具有一定的数学视野,逐步认识到数学的科学价值、应用价值和文化价值,形成批判性的思维习惯。学习方式的转变是本次课程改革的显著特征,改变原有的单纯接受方式的学习方式,建立和形成旨在充分调动、发挥学生主体性的探究式学习方式,自然成为教学改革的核心任务。专家认为,从教育心理学角度来讲,学生的学习方式有接受和发现两种:在接受学习中,学习内容是以定论的形式直接呈现出来的,学生是知识的接受者;在发现学习中,学习内容是以问题间接呈现出来的,学生是知识的发现者,两种学习方式都有其存在的价值,彼此是相辅相成的关系。转变学习方式就是把学习过程中的发现、探究等认识活动凸显出来,使学习过程更多地成为学习发现问题、提出问题、解决问题的过程。因此,强调发现学习、探究学习、研究学习,成为本次课改的亮点。从推进素质教育的角度来讲,转变学习方式,要以培养创新精神和实践能力为主要目的,换言之,要构建旨在培养创新精神和实践能力的学习方式和教学方式,要注意培养学生的科学思维品质,鼓励学生对书本的质疑和对教师的超越,赞赏富有个性化的理解和表达。要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯。
高中数学学习方法4
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的'题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!
高中数学学习方法5
一、培养“数形”结合的能力
“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
二、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度?时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的`五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“议程”思维就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
学数学就像吃“牛轧花生糖”
怎么学?其实,这是一个吃“牛轧花生糖”的过程。我想借用这5个字“牛、轧(同音“扎”,即扎实)、花生(谐音“化生”,即解题中的“化生为熟”策略)糖(甜蜜)”,来谈谈我对大家的建议。
提起“牛”,人们会说牛气冲天、老黄牛、牛劲。是的,我们学习就是要一股牛气,要有一股初生牛犊的精神,要有牛气冲天的干劲,要不畏难、不怕苦,要勤于思考、敢于实践,要把自卑一扫而光,代之而起的是高涨而持续的学习热情。
牛在紧要关头不仅有冲劲,在平时耕田拉车中还特有韧劲,我们特别需要能长久维持的韧劲,它是我们的必要条件,有了这股韧劲,就能克服一切困难,集中精力,发奋读书,即使身体小有不适,也能尽量坚持学习,这是对自己意志的考验。
“轧”音同“扎”,寓意是学习要扎实。数学学习的扎实表现在:
(1)不满足于听懂、看懂,关键要能准确地书写表达出来,还要能举一反三,否则,没有真懂。
(2)运算要既快又准。速度慢了不行,但算错了更不行!
要做到这两条,必须在上认真听讲、用心思考、勤于演算、善于笔记。在课后还要通过一定数量模仿性练习、提高性练习等高质量作业才能牢固掌握,做作业不互相对答案,不抄袭,遇到不懂问题可以相互讨论,但懂了以后自己再独立做。还要自觉学会归纳解题成功的经验和总结失败的教训,做到吃一堑,长一智。
花生的果实生长在地下,默默地被大地滋润着,直到成熟才离开土地,营养价值极高。滋润着成长的是国家以及你们的父母和。
“花生”的“生”单独字面有陌生、生疏的意思,“花”有相间的意思 高中化学,此处借用“花生”是想说在学习过程中会时常出现一些新的问题和困难,这需要我们正确的态度去对待,是强调基础差、问题难,还是知难而进,用心思考,不耻下问,是对每个同学学习毅力的考验。
“花生”的谐音是“化生”,借指数学中常用的——化生为熟。这是数学学习中解决问题的一条重要途径,是学会分析问题和解决问题的重要。
糖是大家喜欢的食品,它给我们辛苦的学习带来一丝甜意,我希望大家在繁重的学习间隙,可以唱支歌、跳曲舞来调节生活,来体验学习的甜蜜,预示同学们三年生活有一个甜美的结果。但是大家知道,葡萄在成熟之前是不甜的,这预示着,在我们最后几个月的学习中可能会有很多感触,那种时而忽然开朗,眼前一片光明,时而百思不解,眼前一片黑暗,那种纠结、烦躁、甚至愤怒,没有亲身经历的人是难以体会的!这样的经历是一个人成长、成熟所必须经历的,我们只能面对,没有逃避的余地,这或许是“先苦后甜”的深刻含义吧。
吃了今天的“牛轧花生糖”,我相信今后你们学习信心更大,克服困难的意志更坚强,解决问题方法更多,成绩提高得更快,明天的日子会更甜!
高中数学学习方法6
高中数学学习方法:
1、认识高中数学的特点。
高中数学是数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象。
2、正确对待学习中遇到的新困难和新问题。
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的.引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
3、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
4、要养成良好的个性品质。
要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
5、要养成良好的预习习惯,提高自学能力。
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
6、要养成良好的审题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
高中数学学习方法7
1、培养良好的学习习惯。
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的`作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找最佳高中数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略,区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
高一数学是高中学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高中数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的高中数学学习方法,付出的努力一定会有回报。
高中数学学习方法8
高中快速提高数学成绩的方法
1、基础知识整理
对于基本概念,基本公式,要熟记于心,然后是揣摩总结各知识点之间的关系,形成自己对于知识的理解,在心中形成自己的知识脉络,理清基础知识间的联系。
2、扎实练习基础知识
练习是必不可少的,但是一定得从基础,从课本开始,课本的练习以及例题是练习的根本,在最开始时一定得将基础练习做好!甚至需要将课本中的例题和练习举一反三!这样才能实现对基础知识的巩固!
3,专攻知识遗漏,专项练习提高成绩
专项练习的目的在于提高,在于清理知识的遗漏,对于经常做也不会的或者也出错的知识,那么不妨花费一段时间来专项突破,这个方法对于提高成绩还是非常快速的。
4,综合提高高一知识掌握
对于成绩的提高必然是对于全套试题的把握,当基础练好,专项练透,综合试卷必然是必须过关的,综合试卷是对做题者的综合能力的`考察,通过练习把做题时间,难易分配,即时思维,临危克难等限时条件下做题效率提高!
提高工作数学成绩的方法
第一、吃苦。学习是孩子自己的事情,别人帮不了你。而且学习本身就是一个很苦的事情,所以,要自己做好吃苦的准备,刻苦钻研,每天努力。
第二、精读教材。现在很多孩子学习成绩不理想,有一个很大部分的原因,就是他自己连教材是什么样子的,都没有认真看过。学校老师,可能上课也是用的导学案,然后孩子课前也没有预习,课后也没有认真的精读教材,进行内容消化。
第三、上课专心听讲,和课后整理笔记。这点有多重要,就不多讲了。为了提高上课效率,课前一定要认真的预习功课。课堂上,不要猛抄笔记,错过老师的解题思路和总结,就得不偿失。笔记是都是课后再去整理和总结的。
第四、独立做题,勤于思考。做题一定要独立完成,不要依赖别人,不要依赖搜题软件。可以翻书,找例题。要轻语思考和总结,把类似的相关题型,归纳总结起来。
第五、不遗留问题。每天遇见的问题,一定要想办法解决,多请教同学和老师,要多问几个为什么,多和同学交流学习上的想法,有自己的观点和分歧的时候,要勇于表达。
高中数学成绩提升的方法
1。平时练习不要翻书
为什么有的孩子在平时完成作业时能够完成得很好,但是到了考试的时候成绩就会比较不理想?这就是因为平时回家练习的时候翻书了。做题的时候翻书会导致我们对一些知识点掌握不牢固,比如一些概念和定义等内容。长此以往,我们就没办法通过作业了解我们有那些知识点没有掌握好,这样自然就没有好成绩了。
2。学会整理错题
错题本是学生在学习的过程中,把自己做过的考试题、模拟题及其他习题中的错题整理成册,便于自我发现薄弱环节,进而进行针对训练以提升成绩的学习工具。所以学会整理错题很重要。那么该怎么整理错题呢?
(1)要分别类整理
将所有错题整理,分请错误的原因。如:概念模糊类、审题错误类、记忆错误、理解错误、计算错误等,将各题注明属于某一章某一节。这样分类便于按原因查找原因,给今后复习带来方便。
(2)不要只记错题
我们在记错题的时候,不光要记错题,还要写下自己错误的原因,已经正确的解题过程及答案。对于部分题型,我们还可以记下不一样的解题思路。
(3)举一反三
类似的题目,可以摘写在旁边,将解题思路写清楚。拓展延伸,将其难度延伸的题目也要摘写下来,好相互比较一下。这样达到具举一反三,触类旁通的效果。
3。学会整理学习资料
在学习过程中,老师会发很多单页的学习资料,这些资料大多数都是老师们针对一个单元中易错的问题内容等做的整理。还有一些其他的学习资料,都是容易损坏、遗失的。如果没有一个整理学习资料的习惯,那么这些学习资料到了复习的时候就找不到了,平时养成整理资料的习惯,到了初高中以后,面对更多的学习资料,会有很大帮助。
培养习惯是个长期的过程,一个好习惯的养成,往往需要漫长的时间。由于人们往往具有惰性,在一段时间的训练之后,如果稍加放松,孩子就会出现反复。但是好的学习习惯能够帮助孩子更好地学习,所以家长们一定要督促孩子养成好的学习习惯。
高中数学学习方法9
高中的学习生活其实不只是要努力,正确的学习方法在学习生活中起着很大的作用。现在我就高中的学习方法给你做些介绍啊,希望对你的学习生活有所作用!我知道你数学不是很好,所以呢,我着重数学。
你们女生老是说高中数学难,其实是那么回事吗?在高考中,数学只有二十一题,选择和填空有十五题,然后再六个大题。所以在高中你只有学会这二十一题就行。
在试卷的第一题你会碰到虚数的有关内容,虚数无非是虚数有理化,实部和虚部,注意实部和虚部都是数哦!之所以这个虚放在第一题就是要你拿到那个五分,一定不要客气哦!在试卷的第二题你将会看到简单逻辑连接词的有关试题,其实这一部分的题目还是比较简单的了,只要掌握了课本上的就足够了。关于前面的两题我就不想多讲了。还有集合内容我也觉得不是高考的重点。至于统计我也就不详细的说了,我所讲的是三角函数与解三角形,函数与导数,立体几何,解析几何,数列,向量。
一:三角函数与解三角形
这个知识点考的还是比较多的,大概有17分。
1、你需要掌握正余弦,正切的图像,及其的有关图像变化。在高考中的图像题可能就是
这方面的。关于图像的上下平移,左右平移,图像的性质。三角函数是个周期函数,这在学习的过程中可能要花不少时间,其实当你不清楚的时候就画画图像,在图像上找到你所要的东西,当然你也要学会求它的周期,这些你都要熟练掌握。其实三角函数的图像无非是关于图形的变换,只要有耐心和一定的基本功,这部分的题目解决来不是什么难事!
2、三角函数的诱导公式,正余弦的和差展开式,二倍角公式,半角公式。这一部分内容
除了必要的练习还要有效的记忆。其中诱导公式是比较多的,你可以先集中记忆,然后在练习中加以巩固,达到熟练的目的。注意,你要找到这些公式的异同点找到自己的方法记忆。比如在做题的时候你看到了平方那么你的第一感觉就是看看能不能用半角公式,从半角公式形式上看它比较适合降次。多找找这样的特点有助于你记忆和应用。
3、快速有效的掌握AB形式。在高考中,这样的题型有着很大的分量。你要做的就是在
什么时候要用这种形式和又好又快的解决这类问题。这种形式我们不难发现它必须是在同角的时候才可以用,至于熟练运用就要靠你平时的努力了!
4、解三角形。这一块要熟练得掌握正余弦定理。无论是正弦还是余弦都必须知道三角形
的三个条件,注意有时我们用正弦的时候发现有两个值,那么一定要注意是不是要舍去一个啊,要经常用大角对大边的定理进行检验。
二:函数与导数
1、基本初等函数。包括一次,二次,指数,对数等函数。对于二次函数的题目我们要注
意的是四要素:开口方向,对称轴,截距,根的分布。在习题中你要时常考虑这四个因素,要寻找到题目中的隐藏条件,大多的题目至少有一个隐藏条件,找到以后你就可以化繁为简。还有,不要怕分类讨论,其实分类讨论只要部遗漏部重复就行,不用太在意那个,难的分类讨论并不是每个人都会。指数函数你要知道它的图像和性质,比如a的范围啊,单调性,值域啊。对数函数和指数函数有共同点,只要掌握了两种图像你就可以掌握他们了。还有,对于基本初等函数的基本运算你还是要多加练习的,比如指数函数和对数函数的几个运算公式你一定要熟练掌握,这是你解决复杂题目的基础。
2、导数的运用。导函数和原函数要能够区别,首先你要明确导函数是用来干嘛的,导函
数就是用来研究原函数的单调性的'一种方式,不能将二者混淆。大部分的导数运用最终都会转化到二次函数上去,所以在有空的时候对二次函数要加强练习。
三:立体几何。
立体几何中最重要的就是线、面的关系。有线面的平行、垂直关系,面面的平行、垂直关系。通常在高考中考察的立体几何就是要证明线面的位置关系以及面面的位置关系。我们在解决此类的题目的时候要数练掌握定理和性质,对于定理我们比较熟悉,而对于性质的运用不是很好,所以我们要加强性质的运用。在解决较复杂的立体几何题目中你多画辅助线,也许辅助线会给你许多的益处,为你的解题提供方便之门。
四:解析几何。
解析几何在高考中的难度比较大,所以只要掌握常规方法就足够了。
1、直线与圆的位置关系,圆与圆的位置关系。这里运用的最多的就是点到直线的距离来判断他们的位置关系。
2、椭圆、双曲线、抛物线。椭圆在高考中出现的频率还是比较高的,形式以直线与椭圆
的位置为主,所以对于常规的圆锥曲线的题目你要掌握常规的解法,比如点差法和代入法啊,这些常规的方法一定要掌握。双曲线和抛物线在前面的客观题还是考的比较多。主要还是离心率考察的比较多,这就要从已知条件出发,将所给的条件划到关于ac上最常见的就是将离心率平方,找到ac的关系。
五:数列。
等差数列的通项公式、求和公式,等比数列的通项公式、求和公式要熟练运用。数列类的题目大部分要你先求通项,然后再求和。
1、你要对求通项和求和的进行分类,找到其中的方法,比如求通项的时候你就要想到利
用和式进行做差,这样就能够解决。当题目给的是递推公式的时候,那么你就要进行构造新的数列,这个新数列不是等比就是等差。在有的题目已经给出了新的构造的数列据比较简单了,只要凑下就好了。
2、在求和的时候你就要会公式发,错位相减法,倒序相加,列项相消法,分组求和等方法。
不过你要分清他们的使用范围,比如错位相减法就是解决等差数列和等比数列的组合的复杂的数列。因为求和的方法不过只有这么多,实在不行的话就一个个的试。
六:向量。
向量在高考中的分量不是很重,所以你只要掌握向量的基本运算。向量的基本运算方法分为几何法和坐标法,几何法就是利用三角形定理和平行四边形定理,这些在选择填空题中常见,另外,充分的运用三点共线原理进行解决问题很重要。坐标法运用的比较多,对于向量的坐标法的基本运算你也要好好的掌握,在几何法解决有点苦难的时候你就要想到坐标法,建系,设点坐标。
高中数学学习方法10
数学是一门讲理的学科,具有很强的逻辑性。初中、高中学习的数学都叫做初等数学,是高等数学的基础。而相对于初中数学来说,高中数学明显难了很多。因此,很多原本在初中数学成绩很好的同学,到了高中就感到吃力了。针对高中数学特点,我特意总结了两大要素,供同学们参考。
第一大要素:图是高中数学的生命线图是初等数学的生命线,能不能用图支撑思维活动是能否学好初等数学的关键。无论是几何还是代数,拿到题的第一件事都应该是画图。有的时候,一些简单题只要把图画出来,答案就直接出来了。遇到难题时就更应该画图,图可以清楚地呈现出已知条件。而且解难题时至少一问画一个图,这样看起来清晰,做题的时候也好捋顺思路。首先要在脑中有画图的意识,形成条件反射,拿到一道数学题就先画图。而且要有用图的'意识,画了图而不用,等于没画。有了画图、用图的意识后,要具备画图的技能。有人说,画图还不简单啊,学数学有谁不会画图啊。还真不要小看这一点。很多同学画图没有好习惯,不会用画图工具。圆规、尺子不会用,画出图来非常难看。不是要求大家把图画的多漂亮,而是清晰、干净、准确,这样才会对做题有帮助。改正一下自己在画图时的一些坏习惯,就能提高画图的能力。最重要的,也是高中生最需要培养的就是解图能力。就是根据给定图形能否提炼出更多有用信息;反之亦然,根据已知条件能否画出准确图形。现在高考中会出现数学实验题,这是新课标的产物,就是为了考验学生的综合能力。题虽然新,但只要细心分析就会发现,其实解题运用的知识都是你学过的。高考题是非常严谨的,出题不可能超出教学大纲。
第二大要素:考后总结老师、家长在学生考试后总是关注学生成绩于上一次考试比有怎样的区别。学生们也总是在没考好时找各种理由,无论是为了安慰自己还是安慰老师和家长。家长们在看到孩子成绩下降后不要过分紧张,只要让学生养成一个很好的考试习惯,不愁成绩上不去。学生在考试后应该总结以下三个问题:
第一,这次考试中有什么优点值得表扬。这是自我肯定的过程,太多的人让学生总结丢分原因了,却忽略了除了丢的分,学生还得到了很多分呢。学生要客观分析得分情况,哪些分是靠自己扎实的知识和解题的技巧轻松拿到手的;哪些分是脑中有大概印象再加一点运气成分拿到手的。不管是怎样拿到的,只要是得分了,就值得表扬。
第二,自己还有哪方面问题。在肯定自己优点的时候要客观,分析问题的时候更要客观。很多学生喜欢说一句话“我马虎了,不小心算错了。”我相信,这是实话,但是同学们有没有想过为什么马虎?其实究其根源是计算能力不过关。这是小学算术没学好,我没有办法。计算也是一种能力,需要学生反复训练才能得到的一种能力。发现问题,针对自己的问题制定相应训练,防止下一次考试时再在同一个问题上丢分。
第三,总结心理。心理因素也是影响考试成绩的一部分,例如此次考试是全年级打乱顺序,学生坐在陌生的教室中考试感到紧张,这就有可能影响考试的发挥。这种问题不是发现后短时间就能解决的。要知道,高考时不止是打乱班级顺序的问题了,你可能到一个你根本没去过的学校参加考试,身边的坐的同学是你认识的可能性几乎为零。所以,学生要学会自我调整,不要让这些客观外在条件影响考试水平的发挥。还是那句话,数学是讲理的学科,做完题后想一想,你这样做是不是有道理。数学有三种表现形式,汉语言文字、符号语言和图形。如果能把数学的这三中表现形式在思维中统一起来,那就说明在你脑海中已经形成了数学思维。在学习数学的过程中要学会听、看、画、写、算,充分利用各种感官,架构数学思维,才能够学好高中数学。
高中数学学习方法11
学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。
一、正确对待学习中遇到的新困难和新问题
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
要提高自我调控的“适教”能力。一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
要养成良好的个性品质。要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
要养成良好的预习习惯,提高自学能力。课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
二、要养成良好的审题习惯,提高阅读能力
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
要养成良好的演算、验算习惯,提高运算能力。学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
要养成良好的解题习惯,提高自己的思维能力。数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的.能力。
三、要养成纠错订正的习惯,提高自我评判能力
要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
要养成善于交流的习惯,提高表达能力。在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。15、要养成做笔记的习惯,提高理解力。为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
高中数学学习方法12
现代数学上的三大难题:
一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。
归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。
高中数学成绩下降是什么原因
智者形容数学:“思维的体操,智慧的火花”。“最能考察或验证一个人具备智慧多少的一门学问或学科”!在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分之一,它已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。于是呼,冲刺高考时选学理者多多,且发誓要用数学拉动高考总成绩者众多。可喜可贺!作为衡量一个人能力的重要学科---数学。从小学到,对它情有独钟的大有人在,且大都投入了大量的时间与精力.然而我们也不能忽视另一种事实:并非人人都是成功者!许多小学、时期的数学成绩佼佼者,进入高中阶段,第一个跟头就栽在了数学上。对选学文科的成功者的一项调查也表明,虽然他们高中也很想学好数学,可数学成绩就是提不上来,于是折射形成了“最怕”见高中数学老师的现象。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的。本文仅就学生的学习状态方面浅谈一下影响高中数学成绩下降的原因及解决方法面对众多初中数学学习的成功者沦为高中学习的.失败者,笔者对他们的学习状态进行了调研。结果表明:造成成绩滑坡的主要原因有以下几个方面.
1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理:跟随老师惯性运作。没有掌握学习的主动权.其表现有:不定计划,坐等上课,课前不预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.一切的一切造成没能真正理解所学内容的无奈表态。
2.学不得法.老师上课一般都要讲述知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课不能做到专心听讲,对要点听不清或听不全。于是笔记记了一大本,问题留了一大堆。而课后呢,又不能及时巩固、总结,找不到知识间的联系,只是一味地赶做作业,乱套题型。对概念、法则、公式、定理一知半解,死记硬背的结果是一味地“机械模仿”。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套。最终是事倍功半,收效甚微.
3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,一贯做法是只求知道怎么做,不去认真演算书写。其心理诱因是仅对难题感兴趣,以示自己的“水平”高。这种好高鹜远,重“量”轻“质”的做法导致的结果是陷入题海,不自拔.而到正规作业或考试中却是演算出错或中途“卡壳”.
4.不具备进一步学习条件.高中数学与初中数学相比,知识的广度、深度更进一程,能力要求更进一步.这就要求必须掌握基础知识与基本技能,为进一步学习作好充分准备.高中数学很多地方难度大、方法新、分析能力要求高.如:二次函数在闭区间上的最值问题,函数值域的求法问题,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合的应用和实际应用问题解答等.客观上,这些问题的能力要求就是数学学习的分化点,更何况有的数学知识点还是高、初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
所以,高中学生仅仅有想学的念头是不够的,还必须“会学”。要讲究科学的学习策略和方法,以此提高学习效率,变被动学习为主动学习.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策:
1.加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.
高中数学学习方法
编者按:小编为大家收集了“高中数学学习方法:高一升高二数学学习心得”,供大家参考,希望对大家有所帮助!
度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二,对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识问题还要多。如今到了高二,是不是知识更多更难了呢?
个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别莘不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都昌对函数单调性的理解。到了高二阶段,文科和理科学生都要学习一样新的工具——导数,也就是我们庆不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。
还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”。那么到了高二阶段,我们将要学习更加复杂的三类曲线——椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。
最后在一些小知识上也有所深化,还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上,在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理,到时候同学业们就会知道“乘法”比“加法”究竟能快多少。也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。
总体来说,高二数学的难度比高一要大,但是如果同学们在高一的时候对知识有深入的理解的话,高二阶段的知识也就只是个深化练习的过程了,这就要求同学们在高二的时候造成不要放松,这个时期是最需要大量做题,大量练习的时期,错过了这个时期就再也没有机会超越别人了。有人会想高三再努力也不迟,殊不知高三的时候所有好好学习的人都会拼命的做题,拼命地练习,在那时想赶超别人几乎是不可能完成的任务。高三环境是不努力的人必然跌入谷底。努力的人也只可以保证不下降。也就是说想超过别人,走在别人前面,高二已经是最后的机会了。
对于高一阶段知识掌握的不够扎实的同学,高二也是唯一可能提高的机会了,正像上文所说,高二的知识很多是高一知识的扩展和深化,也就是说如果之前学习的时候没有掌握好,那么高二的学习就既是学习过程又是复习过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。比如说如果有同学函数没有学好,没关系,高二学习导数的时候会再回来研究函数问题:平面向量没学好,没关系,学习空间向量的进修也可以顺带复习;直线和圆没学好,没关系,圆锥曲线比圆难多了,学好圆锥曲线之后再回去看圆就轻松多了。
总之,在数学学科,如果你想超越别人,高二是最好的机会,如果你想追上别人,高二是最后的机会。我们将迎来高中整个三年中最困难,最有挑战,也是收益最大的一年。高考中数学的重要性无庸赘述,希望同学们能在高二的时候抓住机会,为了能有一个轻松的高三,也为了能有一个满意的高考而努力。
高中数学学习方法13
怎样学好高中数学
第一步,怎么样学好高中数学首先需要吃透数学书的知识,如何学习知识,如何提高高中数学成绩,同学上课前要做好预习,带着问题来认真听讲,做好布置的,作业。
建议:不管是高一二或者高三同学,怎样学好高中数学一定要把基础知识学扎实的前提下,才能提高数学成绩。
第二步,高中数学在掌握了基础知识之后,再考虑有两种:一种就题论题式思考;一种是思维全面化、系统化思考。就题论题思考是必要的,拿到陌生题目一定要自己思考,实在思考不出来再去看答案或问别人,这对于你的做题水平的提高是很有帮助的。
第三步,这是拔高提升阶段,这一步对于怎样学好高中数学至关重要,我们有的同学做了很多数学题,可是遇到陌生题就不知从何入手了,那么这样的学生如果第二步做好了,那么他们缺的就是第三步: 对高中数学题目的全面系统化思考做到这一步需要整体思维和系统化思维,需要对各类题型进行总结,进行逻辑上的.提炼和升华,同时需要一个思维逻辑高度来全面系统化思考。
高中数学的学习方法
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,使自己在一个轻松的状态下进行数学的学习。我们在学习数学的过程中,要把从老师那里学来的知识转化成自己的语言,使自己能够对知识有一个深刻的印象,学习习惯上的内容也包括在课堂上认真听讲、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、做完数学题之后要及时进行反思。
我们要对自己所做过的数学题进行知识点上的提炼和方法运用上的总结,明确主要的解题思路和方法,对做过的每道题加以反思,对自己从这道题中所获得相关知识内容上有一个总结,让自己能够从所做过的题中获得一些解题经验。
3、积极主动进行数学知识点上的复习。
在每学完一章数学内容知识时,我们要及时进行章节总结。在我们初中数学的学习中,是教师为我们进行数学重点知识上的总结归纳,让我们在数学知识学习上形成了一个较为完整的知识理论体系。但对于高中数学来说,需要我们主动进行相关知识上的复习,积极进行知识总结。
4、随时整理数学资料。
当我们做完一套数学试卷和相关习题时,我们要及时整理资料,把它们按照一定的顺序整理好,这样方便我们在数学复习时查找便捷,再对试卷习题标记出相关重要内容,这样,我们在下一次对试卷复习时能够节省时间,抓住最重要的知识精华部分进行复习。
5、数学的学习模式上要呈现自主化。
在学习数学的过程中我们要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;注重新旧知识间的内在联系,要有创新意识,从从多侧面、多角度思考问题。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
高中数学学习方法14
高中数学学习方法:其实就是学习解题
高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
如何学好数学
首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。
二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课。
三.。像演电影一样把课堂,整理笔记,
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
《希腊文集》中的方程问题
《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。
《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”
我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程
这是一个一元一次方程。
移项,得
答:毕达哥拉斯有28名学生听课。
《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:
“驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”
这个问题可以用方程组来解:
设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有
2(x-1)=y+1 (1)
又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有
x+1=y-1 (2)
(1)与(2)联立,有
这是一个二元一次议程组。
(1)-(2)得 x-3=2,
x=5 (3)
将(3)代入(2),得y=7。
答:驴原来驮5口袋,骡子原来驮7口袋。
《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的.守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
这道题也是用诗歌形式写在的:
爱罗斯在路旁哭泣,
泪水一滴接一滴。
吉波莉达向前问道:波利尼
“是什么事情使你如此伤悲?
我可能够帮助你?”
爱罗斯回答道:
“九位文艺女神
不知来自何方
把我从赫尔康山采回的苹果,
几乎一扫而光,
叶芙特尔波飞快地抢走十二分之一,
爱拉托抢得更多——
七个苹果中拿走一个。
八分之一被达利娅抢走,
比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,
只取走二十分之一。
可又来了克里奥,
她的收获比这多四倍。
还有三位女神,
个个都不空手,
30个归波利尼娅,
120个归乌拉尼娅,
300个归卡利奥帕。
我,可怜的爱罗斯。
爱罗斯原有多少个苹果?还剩下50个苹果。”
设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。
可列出方程
答:爱罗斯原来有苹果3360个。
选自《中学生数学》20xx年5月下
20xx高考数学复习三步曲
编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!
今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。
理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。
抓基础:不变应万变
把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。
当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。
理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。
尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。
破难题:提升应对力
如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。
理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。
为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。
重方法:培养好品质
有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。
我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!
以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。
生物数学概论
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。
生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。
生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。
由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。
生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。
数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。
数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。
比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。
还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。
由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。
多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。
生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。
多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。
系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。
概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。
60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。
上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。
数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。
当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。
20xx年高考数学命题预测之立体几何
【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
20xx年高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系。
2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。
3.多面体及简单多面体的概念、性质多在选择题,填空题出现。
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题
高中数学学习方法15
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的.情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我_,要有自己不垮,谁也不能打垮我的自豪感。
解析几何:
这块刚开始做,也是最后一问永远不会,就是不敢去做,直接跳过的那种题。后来题目做多了后发现,那些题,无论如何把韦达公式放上去绝对没错。就算算不出来摆上去也会有分数的。
在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,在每次做完题后,根据题目设问的类型要进行反思和整理。
练习
高考前做几套押题卷,来模拟高考是非常有必要的,那么该选择什么类型的试题呢?总之数学一定要多做练习,整理错题集。
【高中数学学习方】相关文章:
高中数学的学习计划07-15
高中数学的学习方法12-02
高中数学学习计划07-15
高中数学的学习方法05-17
高中数学学习总结04-09
高中数学的学习方法(优)05-29
高中数学学习方法10-12
高中数学学习计划书07-15
高中数学新课程学习心得02-26
高中数学学习方法总结07-14