高一数学知识点总结

时间:2024-11-06 11:47:00 知识点总结 我要投稿

(精品)高一数学知识点总结15篇

  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以使我们更有效率,因此十分有必须要写一份总结哦。我们该怎么写总结呢?以下是小编为大家整理的高一数学知识点总结,仅供参考,大家一起来看看吧。

(精品)高一数学知识点总结15篇

高一数学知识点总结1

  1.并集

  (1)并集的定义

  由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作“A并B”);

  (2)并集的符号表示

  A∪B={x|x∈A或x∈B}.

  并集定义的数学表达式中“或”字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的

  x∈A,或x∈B包括如下三种情况:

  ①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.

  由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的'集合.

  例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

  2.交集

  利用下图类比并集的概念引出交集的概念.

  (1)交集的定义

  由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).

  (2)交集的符号表示

  A∩B={x|x∈A且x∈B}.

高一数学知识点总结2

  (1)再根据定义判定;

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定。

  函数的解析表达式

  (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。

  (2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

  函数(小)值

  1利用二次函数的性质(配方法)求函数的(小)值

  2利用图象求函数的.(小)值

  3利用函数单调性的判断函数的(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学知识点总结3

  一、圆的方程定义:

  圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

  二、直线和圆的位置关系:

  1、直线和圆位置关系的判定

  方法一是方程的观点,即把圆的'方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

  ①Δ>0,直线和圆相交。

  ②Δ=0,直线和圆相切。

  方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

  2、直线和圆相切,这类问题主要是求圆的切线方程。求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

  3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

  三、切线

  1、性质

  ⑴圆心到切线的距离等于圆的半径;

  ⑵过切点的半径垂直于切线;

  ⑶经过圆心,与切线垂直的直线必经过切点;

  ⑷经过切点,与切线垂直的直线必经过圆心;

  2、当一条直线满足

  (1)过圆心;

  (2)过切点;

  (3)垂直于切线三个性质中的两个时,第三个性质也满足。

  3、切线的判定定理

  经过半径的外端点并且垂直于这条半径的直线是圆的切线。

  4、切线长定理

  从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线分两条切线的夹角。

  四、圆锥曲线的定义

  1、椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

  2、双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即。

  3、圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。

高一数学知识点总结4

  1、在运用性质logaMn=nlogaM时,要特别注意条件,在无M>0的条件下应为logaMn=nloga|M|(n∈N,且n为偶数)。

  2、对数值取正、负值的规律:

  当a>1且b>1,或00;

  3、对数函数的。定义域及单调性:

  在对数式中,真数必须大于0,所以对数函数y=logax的定义域应为{x|x>0}。对数函数的单调性和a的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论。

  4、对数式的化简与求值的.常用思路

  (1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并。

  (2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算。

高一数学知识点总结5

  必修一

  一、集合

  一、集合有关概念1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:

  (1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合间的基本关系1.“包含”关系子集

  注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)2

  实例:设A={x|x-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n个元素的集合,含有2个子集,2个真子集

  二、函数

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法

  5、二次函数根的问题一题多解&指数函数y=a^x

  a^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称&对数函数y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:换底公式logcblogab(a0,且a1;c0,且c1;b0).幂函数y=x^a(a属于R)logca1、幂函数定义:一般地,形如yx(aR)的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0时,幂函数的图象通过原点,并且在区间[0,)上是增函数.特别地,当1时,幂函数的图象下凸;当01时,幂函数的图象上凸;(3)0时,幂函数的图象在区间(0,)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴.

  方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的.方程,可以将它与函数yf(x)的图○

  象联系起来,并利用函数的性质找出零点.4、二次函数的零点:2bxc(a0).二次函数yax2(1)△>0,方程axbxc0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2(2)△=0,方程axbxc0有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.2(3)△<0,方程axbxc0无实根,二次函数的图象与x轴无交点,二次函数无零点.

  高一数学知识总结数性质三、平面向量

  向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.

  有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.

  单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算

  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法满足所有的加法运算定律。

  减法运算

  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  数乘运算

  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法运算、减法运算、数乘运算统称线性运算。

  向量的数量积

  已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数

  1、善于用“1“巧解题

  2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法

  15、正弦函数、余弦函数和正切函数的图象与性质:ysinxytanxycosx函图象

  定义域值域最值周期性奇偶性单调性

  RR

  1,1

  当x2kk当x2kk时,

  ymax时,21;当ymax1;当x2kx2kk时,ymin1.ky1.2min时,

  2

  1,1

  xxk,k

  2R

  既无最大值也无最小值

  2

  奇函数

  奇函数

  在

  偶函数

  对称性

  必修四

  角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.k36090,k第一象限角的集合为k360,k第二象限角的集合为k36090k360180第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k3、与角终边相同的角的集合为*k360,k4、已知是第几象限角,确定n所在象限的方法:先把各象限均分n等份,再从x轴的正半

  2k,2k在2k,2kk上232k上是增函数;在是增函数;在2k,2k2k,2kk上是减函数.22k上是减函数.对称中心k,0中心称k对对称轴xkkk,0k

  x2k对称轴2k

  ,k

  22k上是增函数.

  k,0k对称中心无对称轴2在kn轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为区域.

  5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函数知识:同角三角函数基本关系

  ⒈同角三角函数的基本关系式倒数关系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的关系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式

  ⒉两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n终边所落在的

  倍角公式

  ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

  ⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα万能公式⒌万能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化积公式

  ⒎三角函数的和差化积公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22积化和差公式

  ⒏三角函数的积化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

高一数学知识点总结6

  1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外接圆的半径,则有asinbsincsinC2R.

  2、正弦定理的变形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。)⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC中,已知a、b、A(A为锐角)求B。具体的做法是:数形结合思想画出图:法一:把a扰着C点旋转,看所得轨迹以AD有无交点:当无交点则B无解、当有一个交点则B有一解、当有两个交点则B有两个解。法二:是算出CD=bsinA,看a的情况:当a但不能到达,在岸边选取相距3千米的C、D两点,并测得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面内),求两目标A、B之间的距离。本题解答过程略附:三角形的五个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.

  7、数列:按照一定顺序排列着的一列数.

  8、数列的项:数列中的每一个数.

  9、有穷数列:项数有限的数列.

  10、无穷数列:项数无限的数列.

  11、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:an+1>an).

  12、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:an+1④nana1d1;⑤danamnm.

  21、若an是等差数列,且mnpq(m、n、p、q),则amanapaq;若an是等差数列,且2npq(n、p、q),则2anapaq.

  22、等差数列的前n项和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an

  23、等差数列的前n项和的性质:①若项数为2nn,则S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若项数为2n1n,则S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,

  24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:an1anq(注:①等比数列中不会出现值为0的项;②同号位上的值同号)注:看数列是不是等比数列有以下四种方法: 2①anan1q(n2,q为常数,且0)②anan1an1(n2,anan1an10)③ancqn(c,q为非零常数).④正数列{an}成等比的充要条件是数列{logxan}(x1)成等比数列.

  25、在a与b中间插入一个数G,使a,G,b成等比数列,则G称为a与b的等比中项.若Gab,22则称G为a与b的等比中项.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1

  26、若等比数列an的首项是a1,公比是q,则ana1q.

  27、通项公式的变形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.

  28、若an是等比数列,且mnpq(m、n、p、q),则amanapaq;若an是等比数列,且2npq(n、p、q),则anapaq.na1q1

  29、等比数列an的前n项和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an

  30、对任意的数列{an}的前n项和Sn与通项an的关系:ans1a1(n1)snsn1(n2)

  [注]:①ana1n1dnda1d(d可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d不为0,则是等差数列充分条件).②等差{an}前n项和Sndddd22AnBnna1n→222可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若d不为零,则是等差数列的充分条件.

  ③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)..附:几种常见的数列的思想方法:⑴等差数列的前n项和为Sn,在d0时,有最大值.如何确定使Sn取最大值时的n值,有两种方法:

  d2n2一是求使an0,an10,成立的n值;二是由Sn数列通项公式、求和公式与函数对应关系如下:数列等差数列等比数列数列等差数列前n项和公式通项公式(a1d2)n利用二次函数的性质求n的值.

  对应函数(时为一次函数)(指数型函数)对应函数(时为二次函数)等比数列(指数型函数)我们用函数的观点揭开了数列神秘的“面纱”,将数列的通项公式以及前n项和看成是关于n的函数,为我们解决数列有关问题提供了非常有益的启示。

  例题:1、等差数列分析:因为中,,则.是等差数列,所以是关于n的一次函数,一次函数图像是一条直线,则(n,m),(m,n),(m+n,)三点共线,所以利用每两点形成直线斜率相等,即,得=0(图像如上),这里利用等差数列通项公式与一次函数的对应关系,并结合图像,直观、简洁。

  例题:2、等差数列中,,前n项和为,若,n为何值时最大?

  分析:等差数列前n项和可以看成关于n的二次函数=,是抛物线=上的离散点,根据题意,,则因为欲求最大。最大值,故其对应二次函数图像开口向下,并且对称轴为,即当时,

  例题:3递增数列,对任意正整数n,递增得到:恒成立,设恒成立,求恒成立,即,则只需求出。,因为是递的最大值即

  分析:构造一次函数,由数列恒成立,所以可,显然有最大值对一切对于一切,所以看成函数的取值范围是:构造二次函数,,它的.定义域是增数列,即函数为递增函数,单调增区间为,抛物线对称轴,因为函数f(x)为离散函数,要函数单调递增,就看动轴与已知区间的位置。从对应图像上看,对称轴的左侧在也可以(如图),因为此时B点比A点高。于是,,得⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n项和可依照等比数列前n项和的推倒导方法:错位相减求和.例如:112,314,...(2n1)12n,...⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差d1,d2的最小公倍数.

  2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证anan1(anan1)为同一常数。(2)通项公式法。(3)中项公式法:验证

  2an1anan2(an1anan2)nN都成立。2am03.在等差数列{an}中,有关Sn的最值问题:(1)当a1>0,d把①式两边同乘2后得2sn=122232n2234n1②

  用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12

  4.倒序相加法:类似于等差数列前n项和公式的推导方法.5.常用结论1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)

  1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)

  31、ab0ab;ab0ab;ab0ab.

  32、不等式的性质:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.

  33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.

  34、含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法

  穿根法(零点分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)

  解法:①将不等式化为a0(x-x1)(x-x2)(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“

  由图可看出不等式x23x26x80的解集为:

  x|2x1,或x4

  (x1)(x2)(x5)(x6)(x4)0的解集。

  例题:求解不等式

  解:略

  一元二次不等式的求解:

  特例①一元一次不等式ax>b解的讨论;

  ②一元二次不等式ax+bx+c>0(a>0)解的讨论.

  二次函数yax22

  000bxc有两相异实根x1,x2(x1x2)(a0)的图象一元二次方程ax2有两相等实根x1x2b2abxc0a0的根2无实根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2对于a0(或

  f(x)g(x)(2)转化为整式不等式(组)

  1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)

  f(x)例题:求解不等式:解:略例题:求不等式

  xx11

  1的解集。

  3.含绝对值不等式的解法:基本形式:

  ①型如:|x|<a(a>0)的不等式的解集为:x|axa②型如:|x|>a(a>0)的不等式的解集为:x|xa,或xa变型:

  其中-c3x23x23x2(x2)(x3)10xR③当x2时,(去绝对值符号)原不等式化为:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集为:x|112x9(注:是把①②③的解集并在一起)2y函数图像法:

  令f(x)|x2||x3|

  2x1(x3)则有:f(x)5(3x2)

  2x1(x2)f(x)=1051123o292x在直角坐标系中作出此分段函数及f(x)10的图像如图11292由图像可知原不等式的解集为:x|x4.一元二次方程ax2+bx+c=0(a>0)的实根的分布常借助二次函数图像来分析:y设ax2+bx+c=0的两根为、,f(x)=ax2+bx+c,那么:0①若两根都大于0,即0,0,则有0

  0o对称轴x=b2ax

  0b0②若两根都小于0,即0,0,则有2af(0)0y

  11

  对称轴x=b2aox

  ③若两根有一根小于0一根大于0,即0,则有f(0)0

  ④若两根在两实数m,n之间,即mn,

  0bnm则有2af(m)0of(n)0yoxymX=b2anx⑤若两个根在三个实数之间,即mtn,

  yf(m)0则有f(t)0

  f(n)0

  常由根的分布情况来求解出现在a、b、c位置上的参数

  例如:若方程x2(m1)xm2m30有两个正实数根,求m的取值范围。

  4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有两个正实数根时,m3。

  又如:方程xxm10的一根大于1,另一根小于1,求m的范围。

  55220m(1)4(m1)02解:因为有两个不同的根,所以由21m122f(1)011m101m122

  35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.

  36、二元一次不等式组:由几个二元一次不等式组成的不等式组.

  37、二元一次不等式(组)的解集:满足二元一次不等式组的x和y的取值构成有序数对x,y,所有这样的有序数对x,y构成的集合.

  38、在平面直角坐标系中,已知直线xyC0,坐标平面内的点x0,y0.①若0,x0y0C0,则点x0,y0在直线xyC0的上方.②若0,x0y0C0,则点x0,y0在直线xyC0的下方.

  39、在平面直角坐标系中,已知直线xyC0.(一)由B确定:①若0,则xyC0表示直线xyC0上方的区域;xyC0表示直线xyC0下方的区域.

  ②若0,则xyC0表示直线xyC0下方的区域;xyC0表示直线 xyC0上方的区域.

  (二)由A的符号来确定:先把x的系数A化为正后,看不等号方向:①若是“>”号,则xyC0所表示的区域为直线l:xyC0的右边部分。②若是“线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.可行解:满足线性约束条件的解x,y.可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.

  41、设a、b是两个正数,则ab2称为正数a、b的算术平均数,ab称为正数a、b的几何平均数.ab2ab.

  42、均值不等式定理:若a0,b0,则ab2ab,即

  43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.

  44、极值定理:设x、y都为正数,则有:

  ⑴若xys(和为定值),则当xy时,积xy取得最大值s42.⑵若xyp(积为定值),则当xy时,和xy取得最小值2例题:已知x解:∵x5454p.14x5,求函数f(x)4x2的最大值。

  ,∴4x50由原式可以化为:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132当54x154x2,即(54x)1x1,或x32(舍去)时取到“=”号也就是说当x1时有f(x)max2

高一数学知识点总结7

  【基本初等函数】

  一、指数函数

  (一)指数与指数幂的运算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

  当是偶数时,正数的.次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2、分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

  3、实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

  注意:指数函数的底数的取值范围,底数不能是负数、零和1。

  2、指数函数的图象和性质

高一数学知识点总结8

  本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.

  重难点知识归纳

  1、平面

  (1)平面概念的理解

  直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.

  抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.

  (2)平面的表示法

  ①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.

  ②字母表示:常用等希腊字母表示平面.

  (3)涉及本部分内容的.符号表示有:

  ①点A在直线l内,记作; ②点A不在直线l内,记作;

  ③点A在平面内,记作; ④点A不在平面内,记作;

  ⑤直线l在平面内,记作; ⑥直线l不在平面内,记作;

  注意:符号的使用与集合中这四个符号的使用的区别与联系.

  (4)平面的基本性质

  公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.

  符号表示为:.

  注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.

  公理2:过不在一条直线上的三点,有且只有一个平面.

  符号表示为:直线AB存在唯一的平面,使得.

  注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.

  公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

  符号表示为:.

  注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.

  公理的推论:

  推论1:经过一条直线和直线外的一点有且只有一个平面.

  推论2:经过两条相交直线有且只有一个平面.

  推论3:经过两条平行直线有且只有一个平面.

  2.空间直线

  (1)空间两条直线的位置关系

  ①相交直线:有且仅有一个公共点,可表示为;

  ②平行直线:在同一个平面内,没有公共点,可表示为a//b;

  ③异面直线:不同在任何一个平面内,没有公共点.

  (2)平行直线

  公理4:平行于同一条直线的两条直线互相平行.

  符号表示为:设a、b、c是三条直线,.

  定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

  (3)两条异面直线所成的角

  注意:

  ①两条异面直线a,b所成的角的范围是(0°,90°].

  ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.

  ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

  (i)在空间任取一点,这个点通常是线段的中点或端点.

  (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

  (iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.

  3.空间直线与平面

  直线与平面位置关系有且只有三种:

  (1)直线在平面内:有无数个公共点;

  (2)直线与平面相交:有且只有一个公共点;

  (3)直线与平面平行:没有公共点.

  4.平面与平面

  两个平面之间的位置关系有且只有以下两种:

  (1)两个平面平行:没有公共点;

  (2)两个平面相交:有一条公共直线.

高一数学知识点总结9

  高一年级数学必修三知识点

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的`一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无_。

  奇偶性

  定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  高一数学必修二重要知识点

  公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

  公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

  公理3:过不在同一条直线上的三个点,有且只有一个平面。

  推论1:经过一条直线和这条直线外一点,有且只有一个平面。

  推论2:经过两条相交直线,有且只有一个平面。

  推论3:经过两条平行直线,有且只有一个平面。

  公理4:平行于同一条直线的两条直线互相平行。

  等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

  高一年级数学高效学习方法

  基础是关键,课本是首选

  首先,新高一同学要明确的是:高一数学是高中数学的重点基础。刚进入高一,有些学生还不是很适应,如果直接学习高考技巧仿佛是“没学好走就想跑”。任何的技巧都是建立在牢牢的基础知识之上,因此建议高一的学生多抓基础,多看课本。

  在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。

  高一数学的知识掌握较多,高一试题约占高考得分的70%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充,所以进入高中后,要尽快适应新环境,上课认真听,多做笔记,一定会学好数学。

  因此,新高一同学应该在熟记概念的基础上,多做练习,稳扎稳打,只有这样,才能学好数学。

  一、数学预习

  预习是学好数学的必要前提,可谓是“火烧赤壁”所需“东风”.总的来说,预习可以分为以下2步。

  1.预习即将学习的章节的课本知识。在预习课本的过程中,要将课本中的定义、定理记熟,做到活学活用。有是要仔细做课本上的例题以及课后练习,这些基础性的东西往往是最重要的。

  2.自觉完成自学稿。自学稿是新课改以来欢迎的学习方式!首先应将自学稿上的《预习检测》部分写完,然后想后看题。在刚开始,可能会有一些不会做,记住不要苦心去钻研,那样往往会事倍功半!

  二、数学听讲

  听讲是学好数学的重要环节。可以这么说,不听讲,就不会有好成绩。

  1.在上课时,认真听老师讲课,积极发言。在遇到不懂的问题时,做上标记,课后及时的向老师请教!

  2.记录往往是一个细小的环节。注意老师重复的语句,以及写在黑板上的大量文字(数学老师一般不多写字),及时地用一个小本记录下来,这样日积月累,会形成一个知识小册。

高一数学知识点总结10

  高一数学第一章知识点总结

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的`元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:

  4.集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合间的基本关系

  1.“包含”关系子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1有n个元素的集合,含有2个子集,2个真子集

  例题:1.下列四组对象,能构成集合的是下列四组对象()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数

  2.集合{a,b,c}的真子集共有2个

  3.若集合M={y|y=x-2x+1,x∈R},N={x|x≥0},则M与N的关系是

高一数学知识点总结11

  1、概念:

  (1)回归直线方程

  (2)回归系数

  2.最小二乘法

  3.直线回归方程的应用

  (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

  (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

  (3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

  4.应用直线回归的注意事项

  (1)做回归分析要有实际意义;

  (2)回归分析前,先作出散点图;

  (3)回归直线不要外延。

  高一数学复习方法推荐

  读好课本,学会研究

  同学们应从高一开始,增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。

  记好笔记,注重课堂

  “要学好数学,培养好的听课习惯也很重要。”同学们在听课的时候要集中注意力,把老师讲的`关键性部分听懂、听会。听的时候要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。

  做好作业,讲究规范

  在课堂、课外练习中,培养良好的作业习惯也很有必要。同学们在做作业时,不但要做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径。作业应独立完成,这样可以培养独立思考的能力和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。

  写好总结,把握规律

  “不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”要学好数学,同学们就应该经常做好总结,把握规律。通过与老师、同学平时的接触交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

高一数学知识点总结12

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.

  定义域补充

  能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的`真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.

  构成函数的三要素:定义域、对应关系和值域

  再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

  值域补充

  (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

  3.函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.

  C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}

  图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

  (2)画法

  A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

  B、图象变换法(请参考必修4三角函数)

  常用变换方法有三种,即平移变换、伸缩变换和对称变换

  (3)作用:

  1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

高一数学知识点总结13

  1.抛物线是轴对称图形。对称轴为直线x=—b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b’2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的'位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b’2—4ac>0时,抛物线与x轴有2个交点。

  Δ=b’2—4ac=0时,抛物线与x轴有1个交点。

  Δ=b’2—4ac

  7定义:

  x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

  8范围:

  倾斜角的取值范围是0°≤α

  9理解:

  (1)注意“两个方向”:直线向上的方向、x轴的正方向;

  (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

  10意义:

  ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

  ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

  ③倾斜角相同,未必表示同一条直线。

  11公式:

  k=tanα

  k>0时α∈(0°,90°)

  k

  k=0时α=0°

  当α=90°时k不存在

  ax+by+c=0(a≠0)倾斜角为A,则tanA=—a/b,A=arctan(—a/b)

  当a≠0时,倾斜角为90度,即与X轴垂直

高一数学知识点总结14

  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

  ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

  ⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

  ⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d

  ⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

  ⑴数列{a}为等差数列的`充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

  ⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

  ⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

  ⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

  ⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

  ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

  ⑺记等差数列{a}的前n项和为S.①若a>0,公差d0,则当a≤0且a≥0时,S小.

高一数学知识点总结15

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的.互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a

  |a|越大,则抛物线的开口越小。

【高一数学知识点总结】相关文章:

高一数学知识点总结11-09

高一数学知识点总结06-06

高一数学函数知识点总结12-01

高一数学知识点总结06-10

高一数学必修知识点总结12-15

高一数学必修知识点总结08-01

高一数学集合知识点总结12-01

高一数学的知识点归纳总结07-11

高一数学函数的知识点总结05-28

高一数学必修知识点总结08-30