函数知识点总结

时间:2024-09-18 11:33:21 知识点总结 我要投稿

函数知识点总结(精华15篇)

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,快快来写一份总结吧。总结你想好怎么写了吗?下面是小编精心整理的函数知识点总结,仅供参考,希望能够帮助到大家。

函数知识点总结(精华15篇)

函数知识点总结1

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的.概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

函数知识点总结2

  奇函数和偶函数的定义

  奇函数:如果函数f(x)的.定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。

  偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。

  性质

  奇函数性质:

  1、图象关于原点对称

  2、满足f(—x)= — f(x)

  3、关于原点对称的区间上单调性一致

  4、如果奇函数在x=0上有定义,那么有f(0)=0

  5、定义域关于原点对称(奇偶函数共有的)

  偶函数性质:

  1、图象关于y轴对称

  2、满足f(—x)= f(x)

  3、关于原点对称的区间上单调性相反

  4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

  5、定义域关于原点对称(奇偶函数共有的)

  常用运算方法

  奇函数±奇函数=奇函数

  偶函数±偶函数=偶函数

  奇函数×奇函数=偶函数

  偶函数×偶函数=偶函数

  奇函数×偶函数=奇函数

  证明方法

  设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;

  若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

函数知识点总结3

  1.常量和变量

  在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.

  2.函数

  设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

  3.自变量的取值范围

  (1)整式:自变量取一切实数.(2)分式:分母不为零.

  (3)偶次方根:被开方数为非负数.

  (4)零指数与负整数指数幂:底数不为零.

  4.函数值

  对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.

  5.函数的表示法

  (1)解析法;(2)列表法;(3)图象法.

  6.函数的图象

  把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:

  (1)写出函数解析式及自变量的取值范围;

  (2)列表:列表给出自变量与函数的一些对应值;

  (3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

  7.一次函数

  (1)一次函数

  如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

  特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

  (2)一次函数的图象

  一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

  (3)一次函数的性质

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.

  (4)用函数观点看方程(组)与不等式

  ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.

  ②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

  ③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

  8.反比例函数(1)反比例函数

  (1)如果(k是常数,k≠0),那么y叫做x的反比例函数.

  (2)反比例函数的图象反比例函数的图象是双曲线.

  (3)反比例函数的性质

  ①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的.增大而减小.

  ②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

  ③反比例函数图象关于直线y=±x对称,关于原点对称.

  (4)k的两种求法

  ①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:

  若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB

  (5)正比例函数和反比例函数的交点问题

  若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;

  当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

  1.二次函数

  如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

  几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

  2.二次函数的图象

  二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.

  3.二次函数的性质

  二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:

  (1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;

  (2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

  (3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

  (4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

  <0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移

  抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

函数知识点总结4

  一、二次函数概念:

  a0)b,c是常数

  1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.

  2.二次函数yax2bxc的结构特征:

  ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.b,c是常数,a是二次项系数,b是一次项系数,c是常数项.

  ⑵a,二、二次函数的基本形式

  1.二次函数基本形式:yax2的性质:a的绝对值越大,抛物线的开口越小。

  a的符号a0开口方向顶点坐标对称轴向上00,00,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值0.

  2.yax2c的性质:上加下减。

  a的符号a0开口方向顶点坐标对称轴向上c0,c0,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值c.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值c.

  3.yaxh的性质:左加右减。

  2a的符号a0开口方向顶点坐标对称轴向上0h,0h,性质xh时,y随x的增大而增大;xh时,y随X=hx的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随a02向下X=hx的增大而增大;xh时,y有最大值0.

  4.yaxhk的性质:

  a的符号开口方向顶点坐标对称轴性质a0向上h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随a0向下X=hx的增大而增大;xh时,y有最大值k.

  三、二次函数图象的平移

  1.平移步骤:

  方法一:

  ⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k;

  ⑵保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

  六、二次函数yax2bxc的性质

  b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.

  2a4a2a当xbbb时,y随x的.增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a4acb2值.

  4ab4acb2bb2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,时,y随.当x2a4a2a2a4acb2bb.x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值

  2a2a4a

  七、二次函数解析式的表示方法

  1.一般式:yax2bxc(a,b,c为常数,a0);

  2.顶点式:ya(xh)2k(a,h,k为常数,a0);

  3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).

  注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

  八、二次函数的图象与各项系数之间的关系

  1.二次项系数a

  二次函数yax2bxc中,a作为二次项系数,显然a0.

  ⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;

  ⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

  总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.

  2.一次项系数b

  在二次项系数a确定的前提下,b决定了抛物线的对称轴.

  ⑴在a0的前提下,当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴左侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的右侧.2a⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴右侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的左侧.2a

  总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

  ab的符号的判定:对称轴xb在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同2a右异”总结:

  3.常数项c

  ⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

  ⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;

  ⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

  b,c都确定,那么这条抛物线就是唯一确定的.总之,只要a,二次函数解析式的确定:

  根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

  1.已知抛物线上三点的坐标,一般选用一般式;

  2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

  3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;

  4.已知抛物线上纵坐标相同的两点,常选用顶点式.

  九、二次函数图象的对称

  二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

  1.关于x轴对称

  yax2bxc关于x轴对称后,得到的解析式是yax2bxc;

  yaxhk关于x轴对称后,得到的解析式是yaxhk;

  2.关于y轴对称

  yax2bxc关于y轴对称后,得到的解析式是yax2bxc;

  22yaxhk关于y轴对称后,得到的解析式是yaxhk;

  3.关于原点对称

  yax2bxc关于原点对称后,得到的解析式是yax2bxc;yaxhk关于原点对称后,得到的解析式是yaxhk;

  4.关于顶点对称(即:抛物线绕顶点旋转180°)

  2222b2yaxbxc关于顶点对称后,得到的解析式是yaxbxc;

  2a22yaxhk关于顶点对称后,得到的解析式是yaxhk.n对称

  5.关于点m,n对称后,得到的解析式是yaxh2m2nkyaxhk关于点m,根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

  十、二次函数与一元二次方程:

  1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):

  一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况.图象与x轴的交点个数:

  ①当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的两根.这两点间的距离ABx2x1.

  a2

  ②当0时,图象与x轴只有一个交点;

  ③当0时,图象与x轴没有交点.

  1"当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;

  2"当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.

  2.抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);

  3.二次函数常用解题方法总结:

  ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

  ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

  ⑶根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

  ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

  ⑸与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

  0抛物线与x轴有两个交点0二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0抛物线与x轴只有一个交点抛物线与x轴无交点y=2x2y=x2y=3(x+4)2二次函数图像参考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函数的应用

  刹车距离二次函数应用何时获得最大利润

  最大面积是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

函数知识点总结5

  二次函数概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

  注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

  二次函数公式大全

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0)

  则称y为x的.二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函数的图象

  在平面直角坐标系中作出二次函数y=x??的图象,

  可以看出,二次函数的图象是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P [ -b/2a ,(4ac-b2;)/4a ]。

  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2;+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax2;+bx+c=0

  此时,函数图象与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

函数知识点总结6

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学难点:求出函数的自变量的取值范围。

  教学过程:

  一、问题引新

  1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的'空格中,

  AB长_(m) 1 2 3 4 5 6 7 8 9

  BC长(m) 12

  面积y(m2) 48

  2._的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

  二、提出问题,解决问题

  1、引导学生看书第二页问题一、二

  2、观察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函数关系式有什么共同特点? (都是含有二次项)

  3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  4、课堂练习

  (1) (口答)下列函数中,哪些是二次函数?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3练习第1,2题。

  五、小结叙述二次函数的定义.

  第二课时:26.1二次函数(2)

  教学目标:

  1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

  2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

  教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

  教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

函数知识点总结7

  1、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  二次函数表达式的右边通常为二次三项式。

  2、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点p(h,k)]

  交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点a(x,0)和b(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  3、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  4、抛物线的`性质

  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点p,坐标为:p ( -b/2a,(4ac-b^2)/4a )当-b/2a=0时,p在y轴上;当δ= b^2-4ac=0时,p在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  δ= b^2-4ac

  5、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

  当h>0,k

  当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离ab=|x-x|

  当△=0.图象与x轴只有一个交点;

  当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

函数知识点总结8

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的.同一三角函数的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

函数知识点总结9

  高一数学第三章函数的应用知识点总结

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象○

  联系起来,并利用函数的性质找出零点.

  零点存在性定理:如果函数y=f(x)在区间〔a,b〕上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。先判定函数单调性,然后证明是否有f(a)f(b)第三章函数的应用习题

  一、选择题

  1.下列函数有2个零点的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法计算3x3x80在x(1,2)内的根的过程中得:f(1)0,f(1.5)0,

  f(1.25)0,则方程的根落在区间()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有两个解,则实数a的取值范围是A、(1,)B、(0,1)C、(0,)D、

  4.函数f(x)=lnx-2x的零点所在的大致区间是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10仅有一个正零点,则此零点所在的区间是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函数f(x)lnx2x6的零点落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函数

  fx的图象是不间断的,并有如下的对应值表:x1234567fx8735548那么函数在区间(1,6)上的零点至少有()个A.5B.4C.3D.28.方程2x1x5的解所在的区间是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的区间为A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,则在下列区间中,f(x)0有实数解的是()

  )

  ()

  ()

  ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的'一个根所在的区间为()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的个数为()

  A、0B、1C、2D、3二、填空题

  13.下列函数:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2个零点的函数的序号是。

  x214.若方程3x2的实根在区间m,n内,且m,nZ,nm1,

  x则mn.

  222f(x)(x1)(x2)(x2x3)的零点是15、函数(必须写全所有的零点)。

  扩展阅读:高中数学必修一第三章函数的应用知识点总结

  第三章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○

  并利用函数的性质找出零点.

  4、基本初等函数的零点:

  ①正比例函数ykx(k0)仅有一个零点。

  k(k0)没有零点。x③一次函数ykxb(k0)仅有一个零点。

  ②反比例函数y④二次函数yax2bxc(a0).

  (1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  (2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.

  ⑤指数函数ya(a0,且a1)没有零点。⑥对数函数ylogax(a0,且a1)仅有一个零点1.

  ⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

  5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

  6、选择题判断区间a,b上是否含有零点,只需满足fafb0。Eg:试判断方程xx2x10在区间[0,2]内是否有实数解?并说明理由。

  1

  42x7、确定零点在某区间a,b个数是唯一的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。Eg:求函数f(x)2xlg(x1)2的零点个数。

  8、函数零点的性质:

  从“数”的角度看:即是使f(x)0的实数;

  从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;

  若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.

  Eg:一元二次方程根的分布讨论

  一元二次方程根的分布的基本类型

  2axbxc0(a0)的两实根为x1,x2,且x1x2.设一元二次方程

  k为常数,则一元二次方程根的k分布(即x1,x2相对于k的位置)或根在区间上的

  分布主要有以下基本类型:

  表一:(两根与0的大小比较)

  分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0x10,x20x10,x20x10x2a0)大致图象(得出的结论0b02af000b02af00f00

  大致图象(a0)得出的结论0b02af000b02aaf000b02af000b02aaf00f00(不综讨合论结a论)

  af00表二:(两根与k的大小比较)

  分布情况两根都小于k即两根都大于k即一个根小于k,一个大于k即x1k,x2kx1k,x2kx1kx2a0)大致图象(kkk得出的结论0bk2afk00bk2afk0fk0大致图象(a0)得出的结论0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不综讨合论结a论)a0)afk0分布情况大致图象(得出的结论表三:(根在区间上的分布)

  两根都在m,n内两根有且仅有一根在m,n一根在m,n内,另一根在p,q内(有两种情况,只画了一种)内,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致图象(a0)得出的结论0fm0fn0bmn2a综合结论fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)讨论

  fmfn0Eg:(1)关于x的方程x22(m3)x2m140有两个实根,且一个大于1,一个小于1,求m的取值范围?

  (2)关于x的方程x2(m3)x2m140有两实根在[0,4]内,求m的取值范围?

  2(3)关于x的方程mx2(m3)x2m140有两个实根,且一个大于4,一个小于4,求m的取值范围?

  9、二分法的定义

  对于在区间[a,b]上连续不断,且满足f(a)f(b)0的函数

  yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,

  使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):

  ①若f(x1)=0,则x1就是函数的零点;

  ②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);

  指数函数模型:l(x)abxc(a0,b>0,b1)

  利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型

函数知识点总结10

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的`对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

函数知识点总结11

  1.二次函数的概念

  二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

  2.二次函数的结构特征:

  ⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

  ⑵是常数,是二次项系数,是一次项系数,是常数项。

  2.初三数学二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]。

  注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

  3.二次函数的性质

  1.性质:

  (1)在一次函数上的'任意一点P(x,y),都满足等式:y=kx+b。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  2.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  4.初三数学二次函数图像

  对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

  ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

  ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

  ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

  对于顶点式:

  ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

  ②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

  ③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

  ④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)

函数知识点总结12

  基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。2.当x=0时,b为函数在y轴上的截距。一次函数性质:

  1在一次函数上的'任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当ky2,则x1与x2的大小关系是()

  A.x1>x2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

  6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()

  将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.

  已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①

  和y2=kx2+b②

  (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。15、一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

函数知识点总结13

  一、知识导学

  1.二次函数的概念、图像和性质.(1)注意解题中灵活运用二次函数的一般式二次函数的顶点式二次函数的坐标式

  f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

  (a0)

  (2)解二次函数的问题(如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等)要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解.

  ①

  f(x)ax2bxc(a0),当b24ac0时图像与x轴有两个交点.

  M(x1,0)N(x2,0),|MN|=|x1-x2|=

  .|a|②二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数

  ①amyax(a0,a1)和对数函数ylogax(a0,a1)的概念和性质.

  (1)有理指数幂的意义、幂的运算法则:

  anamn;②(am)namn;③(ab)nanbn(这时m,n是有理数)

  MlogaMlogaNNlogcb1MlogaM;logab

  nlogcaloga对数的概念及其运算性质、换底公式.

  loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指数函数的图像、单调性与特殊点.对数函数的图像、单调性与特殊点.

  ①指数函数图像永远在x轴上方,当a>1时,图像越接近y轴,底数a越大;当0错解:∵18

  5,∴log185b

  log1845log185log189ba∴log3645log1836log184log189log184a5,∴log185b

  log1845log185log189∴log3645log1836log184log189bb错因:因对性质不熟而导致题目没解完.正解:∵18

  bababa

  182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的两个根都大于1的充要条件.

  2错解:由于方程f(x)axbxc0(a0)对应的二次函数为

  f(x)ax2bxc的图像与x轴交点的横坐标都大于1即可.

  f(1)0f(1)0故需满足b,所以充要条件是b

  112a2a错因:上述解法中,只考虑到二次函数与x轴交点坐标要大于1,却忽视了最基本的的前题条件,应让二次函数图像与x轴有

  交点才行,即满足△≥0,故上述解法得到的不是充要条件,而是必要不充分条件.

  f(1)0b正解:充要条件是12a2b4ac0y36x126x5的单调区间.

  x2xx错解:令6t,则y361265=t12t5

  [例3]求函数

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数∴函数

  y36x126x5的单调递减区间是(,6],单调递增区间为[6,)

  x错因:本题为复合函数,该解法未考虑中间变量的取值范围.正解:令6∴函数

  t,则t6x为增函数,y36x126x5=t212t5=(t6)241

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数

  y36x126x5的单调递减区间是(,1],单调递增区间为[1,)

  [例4]已知yloga(2ax)在[0,1]上是x的减函数,则a的取值范围是错解:∵yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,由复合函数关系知,ylogau应为增函数,∴a>1

  错因:错因:解题中虽然考虑了对数函数与一次函数复合关系,却忽视了数定义域的限制,单调区间应是定义域的某个子区间,即函数应在[0,1]上有意义.

  yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,

  由复合函数关系知,ylogau应为增函数,∴a>1

  又由于x在[0,1]上时yloga(2ax)有意义,u2ax又是减函数,∴x=1时,u2ax取最小值是

  正解:∵

  umin2a>0即可,∴a<2,综上可知所求的取值范围是1<a<2[例5]已知函数f(x)loga(3ax).

  (1)当x[0,2]时f(x)恒有意义,求实数a的取值范围.

  (2)是否存在这样的实数a使得函数f(x)在区间[1,2]上为减函数,并且最大值为

  存在,请说明理由.分析:函数

  1,如果存在,试求出a的值;如果不

  f(x)为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一

  0,a1

  般先假设存在后再证明.

  解:(1)由假设,3ax>0,对一切x[0,2]恒成立,a显然,函数g(x)=3ax在[0,2]上为减函数,从而g(2)=32a>0得到a<(2)假设存在这样的实数a,由题设知∴a=

  32∴a的取值范围是(0,1)∪(1,

  32)

  f(1)1,即f(1)loga(3a)=1

  32此时

  f(x)loga(33x)当x2时,f(x)没有意义,故这样的实数不存在.2,

  12x4xa[例6]已知函数f(x)=lg,其中a为常数,若当x∈(-∞,1]时,f(x)有意义,求实数a的取值范围.

  a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),当x∈(-∞,1]时,y=x与y=x都

  24424x2xa2a1333是减函数,∴y=(11)在(-∞,1]上是增函数,(11)max=-,∴a>-,故a的取值范围是(-,+∞).

  4444x2x422

  2

  xx[例7]若(a1)解:∵幂函数

  13(32a)1313,试求a的取值范围.

  yx有两个单调区间,

  ∴根据a1和32a的正、负情况,有以下关系a10a1032a0.①32a0.②a132aa132a解三个不等式组:①得

  a10.③32a023,

  23<a<

  32,②无解,③a<-1,∴a的取值范围是(-∞,-1)∪(

  32)

  [例8]已知a>0且a≠1,f(logax)=

  a1(x-

  xa21)

  (1)求f(x);(2)判断f(x)的奇偶性与单调性;

  2

  (3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m)<0,求m的集合M.

  分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=logax(t∈R),则xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)为奇函数.当a1时,20,a1a1u(x)axax为增函数,当0a1时,类似可判断f(x)为增函数.综上,无论a1或0a1,f(x)在R上都是增函数.

  (3)f(1m)f(1m2)0,f(x)是奇函数且在R上是增函数,f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型习题导练1.函数

  f(x)axb的图像如图,其中a、b为常数,则下列结论正确的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

  x的值为()

  yC.1或4C.2

  2

  2、已知2lg(x-2y)=lgx+lgy,则A.13、方程loga(x1)xA.04、函数f(x)与g(x)=(

  2B.4B.1

  x

  D.4或8D.3

  ()

  2(0A.

  0,nB.,0C.

  0,2

  D.

  2,0

  5、图中曲线是幂函数y=x在第一象限的图像,已知n可取±2,±

  1四个值,则相应于曲线c1、c2、c3、c4的n依次为()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

  2222226.求函数y=log2

  2(x-5x+6)的定义域、值域、单调区间.7.若x满足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

  8.已知定义在R上的函数f(x)2xa2x,a为常数(1)如果f(x)=f(x),求a的值;

  (2)当

  f(x)满足(1)时,用单调性定义讨论f(x)的.单调性.

  基本初等函数综合训练B组

  一、选择题

  1.若函数

  f(x)logax(0a1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为()

  A.214B.22C.4D.12

  2.若函数yloga(xb)(a0,a1)的图象过两点(1,0)

  和(0,1),则()

  A.a2,b2B.a2,b2

  C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()

  A.43B.8C.18D.12

  4.函数ylgx()

  A.是偶函数,在区间(,0)上单调递增B.是偶函数,在区间(,0)上单调递减C.是奇函数,在区间(0,)上单调递增D.是奇函数,在区间(0,)上单调递减

  5.已知函数f(x)lg1x1x.若f(a)b.则f(a)()A.bB.bC.11bD.b

  6.函数f(x)logax1在(0,1)上递减,那么f(x)在(1,)上()

  A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值

  二、填空题1.若

  f(x)2x2xlga是奇函数,则实数a=_________。

  2.函数

  f(x)log1x22x5的值域是__________.

  23.已知log147a,log145b,则用a,b表示log3528。4.设

  A1,y,lgxy,B0,x,y,且AB,则x;y。5.计算:

  322log325。

  ex16.函数y的值域是__________.

  xe1三、解答题

  1.比较下列各组数值的大小:(1)1.7

  2.解方程:(1)9

  3.已知

  4.已知函数

  参考答案

  一、选择题

  x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

  3,log827,log9252231x27(2)6x4x9x

  y4x32x3,当其值域为[1,7]时,求x的取值范围。

  f(x)loga(aax)(a1),求f(x)的定义域和值域;

  1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

  3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即为偶函数

  x,x0时,u是x的减函数,即ylgx在区间(,0)上单调递减

  1x1xlgf(x).则f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的递减区间,即a1,(1,)是u的递增区间,即f(x)递增且无最大值。

  二、填空题1.

  1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

  2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

  而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

  ablog1435141log14log14(214)1log14271(1log147)2a

  log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴lg(xy)0,xy1

  51,∴x1,而x1,∴x1,且y1

  3215.

  5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答题1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

  0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

  3.333332log22log222log23,log332log333log35,223∴log925log827.

  2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

  3x90,3x32,

  x22x4x22x2x(2)()()1,()()10

  39332251()x0,则()x,332

  xlog23512

  3.解:由已知得14x32x37,

  xxxx43237(21)(24)0,得x即

  xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

  xx4.解:aa0,aa,x1,即定义域为(,1);

  ax0,0aaxa,loga(aax)1,即值域为(,1)。

  扩展阅读:高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

  〖2.2〗对数函数

  【2.2.1】对数与对数运算

  (1)对数的定义

  ①若axN(a0,且a1),则x叫做以a为底N的对数,记作xlogaN,其中a叫做底数,

  N叫做真数.

  ②负数和零没有对数.③对数式与指数式的互化:xlogaNaxN(a0,a1,N0).

  (2)几个重要的对数恒等式:loga10,logaa1,logaabb.

  N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中

  0,N0,那么

  MlogaNloga(MN)

  M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)

  ④

  alogaNN

  nlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)

  logba【2.2.2】对数函数及其性质

  (5)对数函数函数名称定义函数对数函数ylogax(a0且a1)叫做对数函数a1yx10a1yx1ylogaxylogax图象O(1,0)O(1,0)xx定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当x1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数logax0(x1)函数值的变化情况logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近x轴在第一象限内,a越小图象越靠低,越靠近x轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念

  设函数果对于

  yf(x)的定义域为A,值域为C,从式子yf(x)中解出x,得式子x(y).如

  y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子

  x(y)表示x是y的函数,函数x(y)叫做函数yf(x)的反函数,记作xf1(y),习惯

  上改写成

  yf1(x).

  (7)反函数的求法

  ①确定反函数的定义域,即原函数的值域;②从原函数式③将xyf(x)中反解出xf1(y);

  f1(y)改写成yf1(x),并注明反函数的定义域.

  (8)反函数的性质

  ①原函数②函数

  yf(x)与反函数yf1(x)的图象关于直线yx对称.

  yf(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.

  yf(x)的图象上,则P"(b,a)在反函数yf1(x)的图象上.

  ③若P(a,b)在原函数④一般地,函数

  yf(x)要有反函数则它必须为单调函数.

  一、选择题:1.

  log89的值是log23A.

  ()

  23B.1C.

  32D.2

  2.已知x=2+1,则log4(x3-x-6)等于

  A.

  ()C.0

  D.

  32B.

  54123.已知lg2=a,lg3=b,则

  lg12等于lg15()

  A.

  2ab

  1abB.

  a2b

  1abC.

  2ab

  1abD.

  a2b

  1ab4.已知2lg(x-2y)=lgx+lgy,则x的值为

  yA.1

  B.4

  ()C.1或4C.(C.ln5

  D.4或-1()

  5.函数y=log1(2x1)的定义域为

  2A.(

  1,+∞)B.[1,+∞)2B.5e

  1,1]2D.(-∞,1)()D.log5e()

  y6.已知f(ex)=x,则f(5)等于

  A.e5

  7.若f(x)logax(a0且a1),且f1(2)1,则f(x)的图像是

  yyyABCD

  8.设集合A{x|x10},B{x|log2x0|},则AB等于

  A.{x|x1}C.{x|x1}

  B.{x|x0}D.{x|x1或x1}

  2OxOxOxOx()

  9.函数ylnx1,x(1,)的反函数为()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空题

函数知识点总结14

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的`增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

函数知识点总结15

  一、函数的定义域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被开方数大于等于零;

  3、对数的真数大于零;

  4、指数函数和对数函数的底数大于零且不等于1;

  5、三角函数正切函数y=tanx中x≠kπ+π/2;

  6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

  二、函数的解析式的常用求法:

  1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法

  三、函数的值域的常用求法:

  1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

  四、函数的最值的常用求法:

  1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法

  五、函数单调性的常用结论:

  1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数

  2、若f(x)为增(减)函数,则-f(x)为减(增)函数

  3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

  4、奇函数在对称区间上的.单调性相同,偶函数在对称区间上的单调性相反。

  5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

  六、函数奇偶性的常用结论:

  1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)

  2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

  3、一个奇函数与一个偶函数的积(商)为奇函数。

  4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

  5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

[精华]函数知识点总结08-28

函数知识点总结(精)08-21

(精品)函数知识点总结08-22

(精)函数知识点总结08-25

(精)函数知识点总结08-25

函数知识点总结【热门】08-21

[精选]函数知识点03-01

函数知识点03-01