函数知识点总结

时间:2024-08-26 09:07:18 知识点总结 我要投稿

[经典]函数知识点总结15篇

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以有效锻炼我们的语言组织能力,我想我们需要写一份总结了吧。如何把总结做到重点突出呢?以下是小编精心整理的函数知识点总结,欢迎阅读,希望大家能够喜欢。

[经典]函数知识点总结15篇

函数知识点总结1

  (一)函数

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。一个X对应两个Y值是错误的x判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应;

  3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

  4、确定函数定义域的方法:

  (1)关系式为整式时,函数定义域为全体实数;

  (2)关系式含有分式时,分式的分母不等于零;

  (3)关系式含有二次根式时,被开放方数大于等于零;

  (4)关系式中含有指数为零的式子时,底数不等于零;

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

  5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式

  6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的.点一定在函数图像上)

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象;

  运用:求解析式中的参数、求函数解释式;

  7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);函数表达式为y=3X-2-1-20xx-6-3-6036

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

  第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

  8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

  (二)一次函数1、一次函数的定义

  一般地,形如ykxb(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且k0)的函数,叫做一次函数,其中x是自变量。当b0时,一次函数ykx,又叫做正比例函数。

  ⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式;

  ⑵当b0,k0时,ykx仍是一次函数;

  ⑶当b0,k0时,它不是一次函数;

  ⑷正比例函数是一次函数的特例,一次函数包括正比例函数;

  2、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零

  当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,y随x的增大而增大();k4、一次函数y=kx+b的图象的画法.

  在实际做题中只需要俩点就可以确定函数图像,一般我们令X=0求出阿Y的值再令Y=0求出X的值.如图

  y=kx+b(0,b)解析:(两点确定一条直线,这两点我们一般确定在坐标轴上,因为X轴上所有坐标点的纵坐标为0即(x,0)Y轴上所有点的

  (-b/k,0)横坐标为0即(0,y)这样作图既快又准确

  5、正比例函数与一次函数之间的关系

  一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b0时,直线经过一、三象限;k0,y随x的增大而增大;(从左向右上升)k0时,将直线y=kx的图象向上平移b个单位;b。

函数知识点总结2

  二次函数概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

  注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

  二次函数公式大全

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的`三种表达式

  一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函数的图象

  在平面直角坐标系中作出二次函数y=x??的图象,

  可以看出,二次函数的图象是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P [ -b/2a ,(4ac-b2;)/4a ]。

  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2;+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax2;+bx+c=0

  此时,函数图象与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

函数知识点总结3

  一次函数知识点总结基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是_________.

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应

  1-12

  例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()

  x(A)4个(B)3个(C)2个(D)1个

  3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。

  2.当x=0时,b为函数在y轴上的`截距。

  一次函数性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当kx2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置

  例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限

  C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-1

  11、一次函数y=kx+b的图象的画法.

  根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图

  象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

函数知识点总结4

  1二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的`二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

  2二次函数解析式的几种形式

  (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

  3二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

函数知识点总结5

  k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2

  当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。

  (4)当b>0时直线与y轴交于原点上方;当b学大教育

  (1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3)

  k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。

  P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数

  1.定义:应注意的问题

  (1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线

  3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育

  表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育

  一次函数图象和性质

  【知识梳理】

  1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的`图象是经过(3.一次函数ykxb的图象与性质

  图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而

  【思想方法】数形结合

  k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质

  【知识梳理】

  1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质

  k的符号k>0yoxk<0yox

  图像的大致位置经过象限性质

  第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y=

  k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4

  x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB

  函数学习方法学大教育

  的面积为.

  【思想方法】数形结合

  二次函数图象和性质

  【知识梳理】

  1.二次函数ya(xh)2k的图像和性质

  图象开口对称轴顶点坐标最值增减性

  在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数

  【思想方法】

  1.常用解题方法设k法2.常用基本图形双直角

  【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=

  14,则tanB=______;(2)若cosA=,则tanB=______.255

  函数学习方法学大教育

  例题2.(1)已知:cosα=

  23,则锐角α的取值范围是()A.0°

函数知识点总结6

  一次函数的图象与性质的口诀:

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的`解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

函数知识点总结7

  I.定义与定义表达式

  一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

  顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

  对称轴与抛物线的交点为抛物线的`顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与_轴交点个数

  Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与_轴没有交点。

  _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=a_^2+b_+c,

  当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

  此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

函数知识点总结8

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的对称性

  (1)函数的轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的'系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

函数知识点总结9

  总体上必须清楚的:

  1)程序结构是三种:顺序结构、选择结构(分支结构)、循环结构。

  2)读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。

  3)计算机的数据在电脑中保存是以二进制的形式.数据存放的位置就是他的地址.

  4)bit是位是指为0或者1。 byte是指字节,一个字节=八个位.

  概念常考到的:

  1、编译预处理不是C语言的一部分,不占运行时间,不要加分号。C语言编译的程序称为源程序,它以ASCII数值存放在文本文件中。

  2、define PI 3.1415926;这个写法是错误的,一定不能出现分号。 -

  3、每个C语言程序中main函数是有且只有一个。

  4、在函数中不可以再定义函数。

  5、算法:可以没有输入,但是一定要有输出。

  6、break可用于循环结构和switch语句。

  7、逗号运算符的级别最低,赋值的级别倒数第二。

  第一章C语言的基础知识

  第一节、对C语言的基础认识

  1、C语言编写的程序称为源程序,又称为编译单位。

  2、C语言书写格式是自由的,每行可以写多个语句,可以写多行。

  3、一个C语言程序有且只有一个main函数,是程序运行的起点。

  第二节、熟悉vc++

  1、VC是软件,用来运行写的C语言程序。

  2、每个C语言程序写完后,都是先编译,后链接,最后运行。(.c—.obj—.exe)这个过程中注意.c和.obj文件时无法运行的,只有.exe文件才可以运行。(常考!)

  第三节、标识符

  1、标识符(必考内容):

  合法的`要求是由字母,数字,下划线组成。有其它元素就错了。

  并且第一个必须为字母或则是下划线。第一个为数字就错了

  2、标识符分为关键字、预定义标识符、用户标识符。

  关键字:不可以作为用户标识符号。main define scanf printf都不是关键字。迷惑你的地方If是可以做为用户标识符。因为If中的第一个字母大写了,所以不是关键字。

  预定义标识符:背诵define scanf printf include。记住预定义标识符可以做为用户标识符。

  用户标识符:基本上每年都考,详细请见书上习题。

  第四节:进制的转换

  十进制转换成二进制、八进制、十六进制。

  二进制、八进制、十六进制转换成十进制。

  第五节:整数与实数

  1)C语言只有八、十、十六进制,没有二进制。但是运行时候,所有的进制都要转换成二进制来进行处理。(考过两次)

  a、C语言中的八进制规定要以0开头。018的数值是非法的,八进制是没有8的,逢8进1。

  b、C语言中的十六进制规定要以0x开头。

  2)小数的合法写法:C语言小数点两边有一个是零的话,可以不用写。

  1.0在C语言中可写成1.

  0.1在C语言中可以写成.1。

  3)实型数据的合法形式:

  a、2.333e-1就是合法的,且数据是2.333×10-1。

  b、考试口诀:e前e后必有数,e后必为整数。请结合书上的例子。

  4)整型一般是4个字节,字符型是1个字节,双精度一般是8个字节:

  long int x;表示x是长整型。

  unsigned int x;表示x是无符号整型。

  第六、七节:算术表达式和赋值表达式

  核心:表达式一定有数值!

  1、算术表达式:+,-,*,/,%

  考试一定要注意:“/”两边都是整型的话,结果就是一个整型。 3/2的结果就是1.

  “/”如果有一边是小数,那么结果就是小数。 3/2.0的结果就是0.5

  “%”符号请一定要注意是余数,考试最容易算成了除号。)%符号两边要求是整数。不是整数就错了。[注意!!!]

  2、赋值表达式:表达式数值是最左边的数值,a=b=5;该表达式为5,常量不可以赋值。

  1、int x=y=10:错啦,定义时,不可以连续赋值。

  2、int x,y;

  x=y=10;对滴,定义完成后,可以连续赋值。

  3、赋值的左边只能是一个变量。

  4、int x=7.7;对滴,x就是7

  5、float y=7;对滴,x就是7.0

  3、复合的赋值表达式:

  int a=2;

  a*=2+3;运行完成后,a的值是12。

  一定要注意,首先要在2+3的上面打上括号。变成(2+3)再运算。

  4、自加表达式:

  自加、自减表达式:假设a=5,++a(是为6),a++(为5);

  运行的机理:++a是先把变量的数值加上1,然后把得到的数值放到变量a中,然后再用这个++a表达式的数值为6,而a++是先用该表达式的数值为5,然后再把a的数值加上1为6,

  再放到变量a中。进行了++a和a++后在下面的程序中再用到a的话都是变量a中的6了。

  考试口诀:++在前先加后用,++在后先用后加。

  5、逗号表达式:

  优先级别最低。表达式的数值逗号最右边的那个表达式的数值。

  (2,3,4)的表达式的数值就是4。

  z=(2,3,4)(整个是赋值表达式)这个时候z的值为4。(有点难度哦!)

  z= 2,3,4(整个是逗号表达式)这个时候z的值为2。

  补充:

  1、空语句不可以随意执行,会导致逻辑错误。

  2、注释是最近几年考试的重点,注释不是C语言,不占运行时间,没有分号。不可以嵌套!

  3、强制类型转换:

  一定是(int)a不是int(a),注意类型上一定有括号的。

  注意(int)(a+b)和(int)a+b的区别。前是把a+b转型,后是把a转型再加b。

  4、三种取整丢小数的情况:

  1、int a =1.6;

  2、(int)a;

  3、1/2;3/2;

  第八节、字符

  1)字符数据的合法形式::

  ‘1’是字符占一个字节,”1”是字符串占两个字节(含有一个结束符号)。

  ‘0’的ASCII数值表示为48,’a’的ASCII数值是97,’A’的ASCII数值是65。

  一般考试表示单个字符错误的形式:’65’ “1”

  字符是可以进行算术运算的,记住:‘0’-0=48

  大写字母和小写字母转换的方法:‘A’+32=’a’相互之间一般是相差32。

  2)转义字符:

  转义字符分为一般转义字符、八进制转义字符、十六进制转义字符。

  一般转义字符:背诵/0、、 ’、 ”、 。

  八进制转义字符:‘141’是合法的,前导的0是不能写的。

  十六进制转义字符:’x6d’才是合法的,前导的0不能写,并且x是小写。

  3、字符型和整数是近亲:两个具有很大的相似之处

  char a = 65 ;

  printf(“%c”, a);得到的输出结果:a

  printf(“%d”, a);得到的输出结果:65

  第九节、位运算

  1)位运算的考查:会有一到二题考试题目。

  总的处理方法:几乎所有的位运算的题目都要按这个流程来处理(先把十进制变成二进制再变成十进制)。

  例1:char a = 6, b;

  b = a<<2;这种题目的计算是先要把a的十进制6化成二进制,再做位运算。

  例2:一定要记住,异或的位运算符号” ^ ”。0异或1得到1。

  0异或0得到0。两个女的生不出来。

  考试记忆方法:一男(1)一女(0)才可以生个小孩(1)。

  例3:在没有舍去数据的时候,<<左移一位表示乘以2;>>右移一位表示除以2。

函数知识点总结10

  1、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  二次函数表达式的右边通常为二次三项式。

  2、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点p(h,k)]

  交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点a(x,0)和b(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  3、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  4、抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点p,坐标为:p ( -b/2a,(4ac-b^2)/4a )当-b/2a=0时,p在y轴上;当δ= b^2-4ac=0时,p在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  δ= b^2-4ac

  5、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

  当h>0,k

  当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离ab=|x-x|

  当△=0.图象与x轴只有一个交点;

  当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a

  顶点的.横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

函数知识点总结11

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f—1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

  注意:

  ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

  ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

  (三)、函数的值域与最值

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的`函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

  如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

  (四)、函数的奇偶性

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

  (五)、函数的单调性

  1、单调函数

  对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。

  对于函数单调性的定义的理解,要注意以下三点:

  (1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。

  (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。

  (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。

  (4)注意定义的两种等价形式:

  设x1、x2∈[a,b],那么:

  ①在[a、b]上是增函数;

  在[a、b]上是减函数。

  ②在[a、b]上是增函数。

  在[a、b]上是减函数。

  需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。

  (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。

  5、复合函数y=f[g(x)]的单调性

  若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。

  在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。

  6、证明函数的单调性的方法

  (1)依定义进行证明。其步骤为:

  ①任取x1、x2∈M且x1(或<)f(x2);

  ②根据定义,得出结论。

  (2)设函数y=f(x)在某区间内可导。

  如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

  (六)、函数的图象

  函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。

  求作图象的函数表达式

  与f(x)的关系

  由f(x)的图象需经过的变换

  y=f(x)±b(b>0)

  沿y轴向平移b个单位

  y=f(x±a)(a>0)

  沿x轴向平移a个单位

  y=—f(x)

  作关于x轴的对称图形

  y=f(|x|)

  右不动、左右关于y轴对称

  y=|f(x)|

  上不动、下沿x轴翻折

  y=f—1(x)

  作关于直线y=x的对称图形

  y=f(ax)(a>0)

  横坐标缩短到原来的,纵坐标不变

  y=af(x)

  纵坐标伸长到原来的|a|倍,横坐标不变

  y=f(—x)

  作关于y轴对称的图形

  【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

  ①求证:f(0)=1;

  ②求证:y=f(x)是偶函数;

  ③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。

  思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。

  解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。

  ②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。

  ③分别用(c>0)替换x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=—f(x)。

  两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期。

函数知识点总结12

  倍角公式

  二倍角公式

  正弦形式:sin2α=2sinαcosα

  正切形式:tan2α=2tanα/(1-tan^2(α))

  余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a=tana·tan(π/3+a)·tan(π/3-a)

  四倍角公式

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  半角公式

  正弦

  sin(A/2)=√((1-cosA)/2)

  sin(A/2)=-√((1-cosA)/2)

  余弦

  cos(A/2)=√((1+cosA)/2)

  cos(A/2)=-√((1+cosA)/2)

  正切

  tan(A/2)=√((1-cosA)/((1+cosA))

  tan(A/2)=-√((1-cosA)/((1+cosA))

  积化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=[cos(a-b)-cos(a+b)]/2

  和差化积

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  诱导公式

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  拓展阅读:三角函数常用知识点

  1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

  2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)

  3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的'余角的正弦值。

  4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

  5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

  6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

函数知识点总结13

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的`|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

函数知识点总结14

  一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  主要考察内容:

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一ic函数与二元一次方程组,一元一次不等式的关系。

  突破方法:

  ①正确理解掌握一次函数的概念,图像和性质。

  ②运用数学结合的思想解与一次函数图像有关的问题。

  ③掌握用待定系数法球一次函数解析式。

  ④做一些综合题的训练,提高分析问题的能力。

  函数性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

  2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

  3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

  4.在两个一次函数表达式中:

  当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的`k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质

  1、作法与图形:通过如下3个步骤:

  (1)列表.

  (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

  正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).

  2、性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3、函数不是数,它是指某一变化过程中两个变量之间的关系。

  4、k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比例):

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b

函数知识点总结15

  【—正比例函数公式】正比例函数要领:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。

  正比例函数的`性质

  定义域:R(实数集)

  值域:R(实数集)

  奇偶性:奇函数

  单调性:

  当>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;

  当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

  周期性:不是周期函数。

  对称性:无轴对称性,但关于原点中心对称。

  正比例函数图像的作法

  1、在x允许的范围内取一个值,根据解析式求出y的值;

  2、根据第一步求的x、y的值描出点;

  3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

函数知识点总结【热门】08-21

(精)函数知识点总结08-25

(精品)函数知识点总结08-22

函数知识点总结(精)08-21

(精)函数知识点总结08-25

函数知识点03-01

[精选]函数知识点03-01

初二函数知识点总结01-13