七年级数学知识点总结

时间:2022-11-29 10:06:03 知识点总结 我要投稿

七年级人教版数学知识点总结汇编8篇

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它是增长才干的一种好办法,因此我们需要回头归纳,写一份总结了。总结怎么写才是正确的呢?下面是小编整理的七年级人教版数学知识点总结,希望对大家有所帮助。

七年级人教版数学知识点总结汇编8篇

七年级人教版数学知识点总结1

  同底数幂的除法

  1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

  2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

  零指数幂

  1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

  负指数幂

  1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

  注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

  整式的乘法

  (一)单项式与单项式相乘

  1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  2、系数相乘时,注意符号。

  3、相同字母的幂相乘时,底数不变,指数相加。

  4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

  5、单项式乘以单项式的结果仍是单项式。

  6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

  (二)单项式与多项式相乘

  1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

  2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

  3、积是一个多项式,其项数与多项式的项数相同。

  4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

  (三)多项式与多项式相乘

  1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

  3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

  4、运算结果中有同类项的要合并同类项。

  5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

  平方差公式

  1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

  2、平方差公式中的a、b可以是单项式,也可以是多项式。

  3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

  4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

  (a+b)?(a-b)的形式,然后看a2与b2是否容易计算。

七年级人教版数学知识点总结2

  七年级人教版上册数学复习资料第一章有理数1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  (3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.

  15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

  19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

  第二章整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  3.多项式:几个单项式的和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  第三章一元一次方程

  1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

  5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:

  (1)读题分析法:…………多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)比率问题:部分=全体比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  (5)商品价格问题:售价=定价折,利润=售价-成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。12、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”13、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。14、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。15、平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。注意:

  (1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。16、平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。17、垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。18、垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

  19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。

  20、同一平面内,两条直线的位置关系:相交或平行。

七年级人教版数学知识点总结3

  整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

  (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  (3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

  (4)在掌握合并同类项时注意:

  a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

  b.不要漏掉不能合并的项。

  c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  说明:合并同类项的关键是正确判断同类项。

  3、几个整式相加减的一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

七年级人教版数学知识点总结4

  【概率】

  一、事件:

  1、事件分为必然事件、不可能事件、不确定事件。

  2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

  3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

  4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

  二、等可能性:是指几种事件发生的可能性相等。

  1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

  2、必然事件发生的概率为1,记作P(必然事件)=1;

  3、不可能事件发生的概率为0,记作P(不可能事件)=0;

  4、不确定事件发生的概率在0—1之间,记作0

  三、几何概率

  1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

  2、求几何概率:

  (1)首先分析事件所占的面积与总面积的关系;

  (2)然后计算出各部分的面积;

  (3)最后代入公式求出几何概率。

七年级人教版数学知识点总结5

  第一章:丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(按名称分)锥圆锥、棱锥

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:11种

  6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  7、三视图

  物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

  8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。

  弧:圆上A、B两点之间的部分叫做弧。

  扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

  第二章:有理数及其运算

  1、有理数的分类

  正有理数

  有理数零有限小数和无限循环小数负有理数整数

  有理数

  分数

  2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。

  4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

  5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。

  6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  7、有理数的运算:

  (1)五种运算:加、减、乘、除、乘方

  (2)有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  (3)运算律

  加法交换律abba

  加法结合律(ab)ca(bc)乘法交换律abba乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac

  第三章:字母表示数

  1、代数式

  用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  2、同类项

  所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

  3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

  4、去括号法则

  (1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

  (2)括号前是“”,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。

  5、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章:平面图形及其位置关系

  1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。

  2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。

  3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。

  4、点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。

  一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。

  一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。

  5、点和直线的位置关系有两种:

  ①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。

  6、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  (4)直线上有无穷多个点。

  (5)两条不同的直线至多有一个公共点。

  7、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。

  8、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。

  9、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的'端点旋转而成的。

  10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  12、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”

  13、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。

  14、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  15、平行线:

  在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

  注意:

  (1)平行线是无限延伸的,无论怎样延伸也不相交。

  (2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  16、平行线公理及其推论

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

  补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。

  (3)平行线的定义。

  17、垂直:

  两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

  直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

  18、垂线的性质:

  性质1:平面内,过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

  19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。

  20、同一平面内,两条直线的位置关系:相交或平行。

  第五章:一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。(2)等式的两边同时乘以同一个数(或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、解一元一次方程的一般步骤:

  (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

  第六章:生活中的数据

  1、科学记数法

  一般地,一个大于10的数可以表示成a10的形式,其中1a10,n是正整数,这种记数方法叫做科学记数法。

  2、扇形统计图及其画法:

  扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。画法:

  (1)计算不同部分占总体的百分比(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比)。

  (2)计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。(3)在圆中画出各个扇形,并标上百分比。

  3、各种统计图的优缺点

  条形统计图:能清楚地表示出每个项目的具体数目。折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  第七章:可能性

  1、确定事件和不确定事件

  (1)确定事件

  必然事件:生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。不可能事件:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。

  (2)不确定事件:

  有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件

  2、不确定事件发生的可能性

  一般地,不确定事件发生的可能性是有大小的。必然事件发生的可能性是1不可能事件发生的可能性是0。

七年级人教版数学知识点总结6

  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。2、点、线、面、体(1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。3、常见的几何体及其特点

  长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

  棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

  圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

  圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:11种

  6、截一个正方体:

  (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的截面有相似之处.(2)用平面截圆柱体,可能出现以下的几种情况.

  (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

  (4)用平面去截球体,只能出现一种形状的截面圆.(5)需要记住的要点:

  几何体截面形状正方体圆柱圆锥球

  7、三视图

  物体的三视图指主视图、俯视图、左视图。

  三角形、正方形、长方形、梯形、五边形、六边形圆、长方形、(正方形)、圆、三角形、圆主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。

  第二章有理数及其运算

  1、有理数的概念及分类

  正整数正整数整数零正有理数正分数有理数有理数零负整数①②

  正分数负整数分数负有理数负分数负分数整数和分数统称为有理数。

  注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数

  都看作分数.2、数轴:

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。3、相反数:

  只有符号不同的两个数叫做互为相反数,零的相反数是零。

  注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。4、绝对值:

  (1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。

  零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。也可表示为:;

  绝对值的问题经常分类讨论;(2)绝对值的有关性质

  ①对任意有理数a,都有|a|≥0;②若|a|=0,则a=0;

  ③若|a|=|b|,则a=b或a=-b;④若|a|=b(b>0),则a=±b;⑤若|a|+|b|=0,则a=0且b=0;⑥对任意有理数a,都有|a|=|-a|.5、有理数大小的比较法则:

  在数轴上表示的两个数,右边的数总比左边的数大(大数-小数0,即右边的数-左边的数0);

  正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.6、倒数:

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。

  倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的

  1倒数为.

  a7、有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数同0相加,仍得这个数。

  一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。8、有理数减法法则:

  减去一个数,等于加上这个数的相反数。有理数的加减法混合运算的步骤:①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②可以利用加法则,加法交换律、结合律简化计算。9、有理数乘法法则:

  ①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘,积仍为0。

  135与如果两个数互为倒数,则它们的乘积为1。(如:-2与2、53等)

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。10、有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②除以一个数等于乘以这个数的倒数。

  0除以任何非0的数都得0。0不可作为除数,否则无意义。11、乘方的概念

  (1)求几个相同因数的积的运算,叫做乘方,即

  nn个aaaaanan幂指数底数

  在a中,a叫做底数,n叫做指数,a叫做幂.

  (2)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;

  0.120.01121(3)据规律底数的小数点移动一位,平方数的小数点移动二位.210100注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。(4)乘方的运算性质:①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;

  ④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任何次幂(除0次)都得0;

七年级人教版数学知识点总结7

  第一章有理数

  1.1正数与负数

  ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

  ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

  ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

  注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

  1.2有理数

  1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

  (3)有理数:整数和分数统称有理数。

  2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;

  (2)数轴三要素:原点、正方向、单位长度;

  (3)原点:在直线上任取一个点表示数0,这个点叫做原点;

  (4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

  3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

  4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

  (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3有理数的加减法

  ①有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3、一个数同0相加,仍得这个数。

  加法的交换律和结合律

  ②有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4有理数的乘除法

  ①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0;

  乘积是1的两个数互为倒数。

  乘法交换律/结合律/分配律

  ②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

  两数相除,同号得正,异号得负,并把绝对值相除;

  0除以任何一个不等于0的数,都得0。

  1.5有理数的乘方

  1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。

  4、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

七年级人教版数学知识点总结8

  第四章:几何图形初步

  一几何图形

  几何学:数学中以空间形式为研究对象的分支叫做几何学。

  从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

  1、几何图形的投影问题

  每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。

  2、立体图形的展开问题

  将立体图形的表面适当剪开,

  一、点、线、面、体

  1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体

  2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

  (2)体是由面组成、面与面相交成线、线与线相交成点;

  二、线段、射线、直线

  1、线段、射线、直线的定义

  (1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。

  (2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。

  (3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。

  概念剖析:

  ①线段有两个端点,射线有一个端点,直线没有端点;

  ②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,

  也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;

  ③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;

  例1、下列说法正确的是()

  A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;

  C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;

  2、线段、射线、直线的表示方法

  (1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

  (3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

  概念剖析:

  ①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;

  ②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;

  ③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;

【七年级数学知识点总结】相关文章:

七年级数学下册知识点总结03-02

七年级下数学辅导 知识点总结08-16

七年级人教版数学知识点总结11-28

小升初数学的知识点总结04-11

数学相似知识点总结03-29

数学知识点总结11-07

数学圆知识点总结11-03

七年级上册数学知识点总结07-21

七年级下册数学知识点总结10-07

七年级下册数学知识点总结02-23