高一数学必修一知识点总结

时间:2024-11-24 20:20:01 炜玲 知识点总结 我要投稿

高一数学必修一知识点总结大全

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以有效锻炼我们的语言组织能力,不如静下心来好好写写总结吧。总结你想好怎么写了吗?下面是小编帮大家整理的高一数学必修一知识点总结大全,仅供参考,欢迎大家阅读。

高一数学必修一知识点总结大全

  高一数学必修一知识点总结1

  数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高一数学必修1期末考知识点,希望你喜欢。

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1)元素的确定性;

  2)元素的互异性;

  3)元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集 N*或N+ 整数集Z 有理数集Q 实数集R

  关于属于的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分类:

  1.有限集 含有有限个元素的集合

  2.无限集 含有无限个元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.包含关系子集

  注意: 有两种可能

  (1)A是B的一部分;

  (2)A与B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.相等关系(55,且55,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} 元素相同

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ① 任何一个集合是它本身的子集.AA

  ②真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 AB, BC ,那么 AC

  ④ 如果AB 同时 BA 那么A=B

  3. 不含任何元素的集合叫做空集,记为

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

  记作AB(读作A交B),即AB={x|xA,且xB}。

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作A并B),即AB={x|xA,或xB}.

  3、交集与并集的性质:AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA。

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

  高一数学必修一知识点总结2

  指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_。

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

  当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

  注意:指数函数的底数的取值范围,底数不能是负数、零和1。

  2、指数函数的图象和性质

  高一数学必修一知识点总结3

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a-边长,S=6a2,V=a3

  4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱锥S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、r-底半径h-高V=πr^2h/3

  12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径 d- 直径V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  人教版高一数学必修一知识点梳理

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:

  ①底面是全等的圆;

  ②母线与轴平行;

  ③轴与底面圆的半径垂直;

  ④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:

  ①底面是一个圆;

  ②母线交于圆锥的顶点;

  ③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:

  ①上下底面是两个圆;

  ②侧面母线交于原圆锥的顶点;

  ③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:

  ①球的截面是圆;

  ②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  高一数学必修一知识点总结4

  两个平面的位置关系:

  (1)两个平面互相平行的定义:空间两平面没有公共点

  (2)两个平面的位置关系:

  两个平面平行—————没有公共点;两个平面相交—————有一条公共直线。

  a、平行

  两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

  两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

  b、相交

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

  高一数学必修一知识点总结5

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

  高一数学必修一知识点总结6

  一、集合及其表示

  1、集合的含义:

  “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

  所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

  2、集合的表示

  通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

  有一些特殊的集合需要记忆:

  非负整数集(即自然数集)N正整数集N_或N+

  整数集Z有理数集Q实数集R

  集合的表示方法:列举法与描述法。

  ①列举法:{a,b,c……}

  ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

  ③语言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  强调:描述法表示集合应注意集合的代表元素

  A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

  3、集合的三个特性

  (1)无序性

  指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

  例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:该题有两组解。

  (2)互异性

  指集合中的元素不能重复,A={2,2}只能表示为{2}

  (3)确定性

  集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

  高一数学必修一知识点总结7

  集合间的基本关系

  1.子集,A包含于B,记为:,有两种可能

  (1)A是B的一部分,

  (2)A与B是同一集合,A=B,A、B两集合中元素都相同。

  反之:集合A不包含于集合B,记作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,B=C。A是C的子集,同时A也是C的真子集。

  2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

  4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

  例:集合共有个子集。(13年高考第4题,简单)

  练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

  解析:

  集合A有3个元素,所以有23=8个子集。分别为:

  ①不含任何元素的子集Φ;

  ②含有1个元素的子集{1}{2}{3};

  ③含有两个元素的子集{1,2}{1,3}{2,3};

  ④含有三个元素的子集{1,2,3}。

  集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

  此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。

  高一数学必修一知识点总结8

  1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

  2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

  3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

  4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

  5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

  6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

  7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

  高一数学必修一知识点总结9

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  高一数学必修一知识点总结10

  第一章:解三角形

  1、正弦定理:在C中,a、b、c分别为角、C的对边,R为C的外接圆的半径,则有asinbsina2RcsinC2R.

  2、正弦定理的变形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的变形经常用在有三角函数的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.

  3、三角形面积公式:SC

  4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222

  5、余弦定理的推论:cosbca2bc222,cosacb2ac222,cosCabc2ab222.

  6、设a、b、c是C的角、C的对边,则:①若a2b2c2,则C90为直角三角形;②若a2b2c2,则C90为锐角三角形;③若a2b2c2,则C90为钝角三角形。

  第二章:数列

  1、数列:按照一定顺序排列着的一列数。

  2、数列的项:数列中的每一个数。

  3、有穷数列:项数有限的数列。

  4、无穷数列:项数无限的数列。

  5、递增数列:从第2项起,每一项都不小于它的前一项的数列。

  6、递减数列:从第2项起,每一项都不大于它的前一项的数列。

  7、常数列:各项相等的数列。

  8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列。

  9、数列的通项公式:表示数列an的第n项与序号n之间的关系的公式。

  10、数列的递推公式:表示任一项an与它的前一项an1(或前几项)间的关系的公式。

  11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差。

  12、由三个数a,b组成的等差数列可以看成最简单的等差数列,则称为a与b的等差中项。若bac2,则称b为a与c的等差中项。

  13、若等差数列an的首项是a1,公差是d,则ana1n1d。通项公式的变形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;

  14、若an是等差数列,且mnpq(m、n、p、q),则amanapaq;若an是等差数列,且2npq(n、p、q),则2anapaq;下角标成等差数列的项仍是等差数列;连续m项和构成的数列成等差数列。

  15、等差数列的前n项和的公式:①Snna1an2;②Snna1nn12d。

  16、等差数列的前n项和的性质:①若项数为2nn,则S2nnanan1,且S偶S奇nd,S奇S偶anan1。②若项数为2n1n,则S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an)。

  17、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比。

  18、在a与b中间插入一个数G,使a,G,b成等比数列,则G称为a与b的等比中项。若G2ab,则称G为a与b的等比中项。

  19、若等比数列an的首项是a1,公比是q,则ana1q。

  20、通项公式的变形:①anamq;②a1anqn1;③qn1ana1;④qnmanam。

  21、若an是等比数列,且mnpq(m、n、p、q),则amanapaq;若an是等比数列,且2npq(n、p、q),则anapaq;下角标成等差数列的项仍是等比数列;连续m2项和构成的数列成等比数列。

  22、等比数列an的前n项和的公式:Sna11qnaaq.1nq11q1qq1时,Sna11qa11qq,即常数项与q项系数互为相反数。

  23、等比数列的前n项和的性质:①若项数为2nn,则SS偶奇q。n②SnmSnqSm。③Sn,S2nSn,S3nS2n成等比数列。

  24、an与Sn的关系:anSnSn1S1n2n1

  一些方法:

  一、求通项公式的方法:

  1、由数列的前几项求通项公式:待定系数法

  ①若相邻两项相减后为同一个常数设为anknb,列两个方程求解;

  ②若相邻两项相减两次后为同一个常数设为anan2bnc,列三个方程求解;③若相邻两项相减后相除后为同一个常数设为anaq

  2、由递推公式求通项公式:

  ①若化简后为an1and形式,可用等差数列的通项公式代入求解;②若化简后为an1anf(n),形式,可用叠加法求解;

  ③若化简后为an1anq形式,可用等比数列的通项公式代入求解;

  ④若化简后为an1kanb形式,则可化为(an1x)k(anx),从而新数列{anx}是等比数列,用等比数列求解{anx}的通项公式,再反过来求原来那个。(其中x是用待定系数法来求得)3、由求和公式求通项公式:

  ①a1S1②anSnSn1③检验a1是否满足an,若满足则为an,不满足用分段函数写。

  4、其他

  (1)anan1fn形式,fn便于求和,方法:迭加;

  例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q为相除后的常数,列两个方程求解;

  n4n1(2)anan12anan1形式,同除以anan1,构造倒数为等差数列;

  anan1anan121an1例如:anan12anan1,则1,即为以-2为公差的等差数列。anan1(3)anqan1m形式,q1,方法:构造:anxqan1x为等比数列;

  例如:an2an12,通过待定系数法求得:an22an12,即an2等比,公比为2。(4)anqan1pnr形式:构造:anxnyqan1xn1y为等比数列;(5)anqan1p形式,同除p,转化为上面的几种情况进行构造;因为anqan1pn,则anpnqan1ppn11,若qp1转化为(1)的方法,若不为1,转化为(3)的方法

  二、等差数列的求和最值问题:(二次函数的配方法;通项公式求临界项法)

  ①若②若ak0,则Sn有最大值,当n=k时取到的最大值k满足d0a0k1a10a10ak0,则Sn有最小值,当n=k时取到的最大值k满足d0a0k1

  三、数列求和的方法:

  ①叠加法:倒序相加,具备等差数列的相关特点的,倒序之后和为定值;

  ②错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式,如:an2n13;n③分式时拆项累加相约法:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一项内含有多部分的拆开分别求和法:适用于通项中能分成两个或几个可以方便求和的部分,如:an2n1等;

  四、综合性问题中

  ①等差数列中一些在加法和乘法中设一些数为ad和ad类型,这样可以相加约掉,相乘为平方差;②等比数列中一些在加法和乘法中设一些数为aq和aq类型,这样可以相乘约掉。

  第三章:不等式

  1、ab0ab;ab0ab;ab0ab.比较两个数的大小可以用相减法;相除法;平方法;开方法;倒数法等等。

  2、不等式的性质:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.

  3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.

  4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b4ac201二次函数yaxbxc2a0的图象有两个相异实数根一元二次方程axbxc02有两个相等实数根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a没有实数根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2

  5、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.

  6、二元一次不等式组:由几个二元一次不等式组成的不等式组.

  7、二元一次不等式(组)的解集:满足二元一次不等式组的x和y的取值构成有序数对x,y,所有这样的有序数对x,y构成的集合.

  8、在平面直角坐标系中,已知直线xyC0,坐标平面内的点x0,y0。①若0,x0y0C0,则点x0,y0在直线xyC0的上方。②若0,x0y0C0,则点x0,y0在直线xyC0的下方。

  9、在平面直角坐标系中,已知直线xyC0.①若0,则xyC0表示直线xyC0上方的区域;xyC0表示直线xyC0下方的区域。②若0,则xyC0表示直线xyC0下方的区域;xyC0表示直线xyC0上方的区域。

  10、线性约束条件:由x,y的不等式(或方程)组成的不等式组,是x,y的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x,y的解析式。线性目标函数:目标函数为x,y的一次解析式。线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题。可行解:满足线性约束条件的解x,y。可行域:所有可行解组成的集合。最优解:使目标函数取得最大值或最小值的可行解。

  11、设a、b是两个正数,则ab称为正数a、b的算术平均数,ab称为正数a、b的几何平均数。

  12、均值不等式定理:若a0,b0,则ab2ab,即ab2ab。

  13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR。

  14、极值定理:设x、y都为正数,则有s(和为定值),则当xy时,积xy取得最大值s2⑴若xy。4⑵若xyp(积为定值),则当xy时,和xy取得最小值2p.

  高一数学必修一知识点总结11

  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

  ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

  ⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

  ⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d

  ⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

  ⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

  ⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

  ⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

  ⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

  ⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

  ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

  ⑺记等差数列{a}的前n项和为S.①若a>0,公差d0,则当a≤0且a≥0时,S小.

  高一数学必修一知识点总结12

  不等式

  不等关系

  了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

  (2)一元二次不等式

  ①会从实际情境中抽象出一元二次不等式模型.

  ②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

  ③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

  (3)二元一次不等式组与简单线性规划问题

  ①会从实际情境中抽象出二元一次不等式组.

  ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

  ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

  (4)基本不等式:

  ①了解基本不等式的证明过程.

  ②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  高一数学必修一知识点总结13

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、高中数学必修二知识点总结:直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;

  (2)过圆外一点的切线:

  ①k不存在,验证是否成立

  ②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  5、空间点、直线、平面的位置关系

  公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  应用:判断直线是否在平面内

  用符号语言表示公理1:

  公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:

  公理2的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

  ③它可以判断点在直线上,即证若干个点共线的重要依据。

  公理3:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理3及其推论作用:

  ①它是空间内确定平面的依据

  ②它是证明平面重合的依据

  公理4:平行于同一条直线的两条直线互相平行

  高一数学必修一知识点总结14

  一、课内重视听讲,课后及时复习

  课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

  首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯

  1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

  2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

  3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

  高一必修二数学知识大全

  ①异面直线定义:不同在任何一个平面内的两条直线

  ②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

  求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

  (8)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点。

  三种位置关系的符号表示:aαa∩α=Aa‖α

  (9)平面与平面之间的位置关系:平行——没有公共点;α‖β

  相交——有一条公共直线。α∩β=b

  2、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

  (线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

  3、空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  4、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为。

  ②平面的垂线与平面所成的角:规定为。

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:

  (1)斜线上一点到面的垂线;

  (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

  (3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

  高一数学必修一知识点总结15

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

  高一数学必修一知识点总结16

  知识点总结

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:

  (1)定义法

  (2)复合函数分析法

  (3)导数证明法

  (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的作法

  (1)描点法

  (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

  高一数学必修一知识点总结17

  几何体和体积具有柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两个底面是平行于对应边的全等多边形;侧面和对角为平行四边形;侧边平行相等;平行于底面的截面是与底面相等的多边形。

  (2)棱锥

  几何特征:侧面和对角为三角形;平行于底面的截面与底面相似,相似比等于从顶点到截面距离和高比的平方。

  (3)棱台:

  几何特征:上下底面是相似的平行多边形侧面是梯形侧边交给原棱锥的顶点

  (4)圆柱:定义:以矩形一侧所在的直线为轴旋转,其侧旋转

  几何特征:底面为全等圆;母线与轴平行;轴垂直于底圆的半径;侧展图为矩形。

  (5)圆锥:定义:旋转轴以直角三角形的直角边为旋转轴,旋转一周

  几何特征:底面为圆;母线交于圆锥的顶点;侧展图为扇形。

  (6)圆台:定义:旋转轴以垂直直角梯形和底部腰部为旋转轴,旋转一周

  几何特征:上下底面有两个圆;侧母线交给原圆锥的顶点;侧展图为弓形。

  (7)球体:定义:以半圆直径直线为旋转轴,半圆面旋转一周形成的几何体

  1、几何特征:

  球的截面是圆的;球面上任何一点到球心的距离等于半径。

  2、空间几何三视图

  定义三个视图:正视图(光线从几何前面投影到后面);侧视图(从左到右)

  俯视图(从上到下)

  注:正视图反映物体的高度和长度;俯视图反映物体的长度和宽度;侧视图反映物体的高度和宽度。

  3、空间几何直观图—斜二测绘法

  斜二测绘法特点:与x轴平行的线段仍与x平行,长度不变;

  与y轴平行的线段仍与y平行,长度为原来的一半。

  4、柱、锥、台的表面积和体积

  (1)几何体的表面积是几何体各个面积的和。

  (2)特殊几何体表面积公式(c底部周长,h为高,为斜高,l为母线)

  (3)柱、锥、台的体积公式

  总结高中数学必修二知识点:直线和方程

  (1)直线倾斜角

  定义:x轴向和直线向上方向之间的角称为直线倾斜角。特别是当直线与x轴平行或重合时,我们将其倾斜角设置为0度。因此,倾斜角的值范围为0°≤α<180°

  (2)直线斜率

  定义:倾斜角不是90°直线,倾斜角的正切称为直线的斜率。直线斜率常用k表示。即。斜率反映了直线和轴的倾斜程度。

  当时,;当时,;当时。

  两点以上的直线斜率公式:

  注意以下四点:

  (1)当时公式右侧毫无意义,直线斜率不存在,倾斜角90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可以通过直线上两点的坐标直接获得,而不是倾斜角;

  (4)直线上两点的坐标先求斜率可以获得直线的倾斜角。

  (3)直线方程

  点斜:直线斜率k,且过点

  注:当直线的斜率为0时°时,k=直线方程为y=y1。

  当直线的斜率为90时°当直线斜率不存在时,其方程不能用点斜表示。但是l上的每一个横坐标都等于x所以它的方程是x=x1。

  斜截:,直线斜率为k,Y轴上直线的截距为b

  两点式:直线两点,截矩式:

  直线与轴交点,与轴交点,即与轴和轴的截距。

  一般式:(A,B不全为0)

  注:各种适用范围的特殊方程,如:

  (4)平行于x轴的直线:(b为常数);与y轴平行的直线:(a为常数);

  (5)直线系方程:即具有一定共同性质的直线

  (一)平行直线系

  直线系统平行于已知直线(不全为0):(C为常数)

  (二)垂直线系

  直线系垂直于已知直线(不全为0的常数):(C为常数)

  (1)直线系过定点

  (2)直线系斜率为k:,直线过定点;

  (3)有两条直线,交点的直线系方程为

  (参数)直线不在直线系中。

  (4)两条直线平行垂直

  注:利用斜率判断直线的平行和垂直时,应注意斜率的存在。

  (5)两条直线的交点

  相交

  交点坐标是方程组的一组解。

  方程组无解;方程组有无数的解和重叠

  (8)两点间距公式:平面直角坐标系中的两点

  (9)点到直线距离公式:点到直线的距离

  (10)两平行直线距离公式

  在任何一条直线上任取一点,然后转化为点到直线的距离求解。

【高一数学必修一知识点总结】相关文章:

高一数学必修知识点总结08-30

高一数学必修知识点总结12-15

高一数学必修知识点总结08-01

高一数学必修一知识点总结01-12

高一数学必修一知识点总结05-17

高一数学必修一知识点总结01-03

高一数学必修一知识点总结11-16

高一数学必修一知识点总结06-18

高一必修二数学知识点总结09-08

高一数学必修五知识点总结07-25