数学学习计划

时间:2021-11-02 12:44:34 学习计划 我要投稿

数学学习计划七篇

  时间过得太快,让人猝不及防,我们又将续写新的诗篇,展开新的旅程,来为以后的工作做一份计划吧。相信大家又在为写计划犯愁了?下面是小编为大家收集的数学学习计划7篇,仅供参考,希望能够帮助到大家。

数学学习计划七篇

数学学习计划 篇1

  一、指导思想

  本学期高一备课组以学校教务处、教研组、年级组工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,认真贯彻学校提出的“先学后教”的课堂教学改革方案,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,争取优异的成绩。

  二、教学目标

  使大多数学生能够掌握高中数学基本知识,解决问题的基本能力,提高学生的数学素养。使多数学生能够进入高一级学府继续学习,提高学业水平测试的合格率以及优秀率。

  复习作为知识巩固的一个有效方法在学习中必不可少。而复习课中例题的精选很重要,是否能起到温故而知新的作用。对应的复习课之后的配套练习与作业的反馈的落实也是复习的一个重要环节。因此如何精选专题复习例题与落实作业反馈成了我们备课组的关注点。

  三、教学措施

  这学期的学习内容对学生来说,整体上偏难,特别是运算能力在这学期将得到深化和强化,所以对教师的要求也必将高。在教学内容方面,我们还是主要按照我们学生的特点,对症下药,讲清基本题,理顺中档题,适当补充难题;普通班不追求偏和难,特别对圆锥曲线部分的一些重点、难点的计算题,必须详细讲解给学生听,有些问题甚至需要多讲解几遍,让绝大部分学生真正落实到位。每位教师上完课之后需要思考三个问题:我这节课上得如何?有谁的课比我还优秀?怎样上这节课更好、最好并在备课笔记上做好记录,为以后的教育教学提供参考。在课课练上,以基本题为主,重点在中档题上,做错的问题要抓落实,不放弃任何一个学生,不放过任何一个问题。在课堂上,每位教师都要重视板书,因为学生的书写不规范部分来源于教师的板书,每节课最低有1~2题在书写上力求规范。

  四、教学要求

  整体把握新课程,理清贯穿教材的主要脉络,反映和揭示教学内容的内在联系,展示重要概念的来龙去脉。完成新课标要求,培养学生的数学兴趣,发展学生的数学应用意识。还要渗透高考要求,倡导自主学习方式,逐渐提高学生的思维能力,养成独立思考、积极探索的习惯,注重数学思想和方法的渗透,注重数学思维能力的培养。

  五、具体工作

  为了能够将集体备课落到实处,集体备课做到统一时间,统一地点,确定主要内容。

  (1)按上周集体备课中预先确定备课章节,各位教师论轮流发言,指出备课中的思路,重点和难点。

  (2)然后就上述内容请备课组全体成员共同讨论教学任务中的有关教学大纲,疏通教材,指出重难点,列举一些典型例题,精选练习题等,并请有教学经验的老师做必要的解释、说明和补充,备课组长认真做好记录,对于一些认识分歧比较大的地方,认真讨论,达成共识。

  (3)讨论下周教案的编撰的具体事宜,确定四至五课时内容的个体教学目标、重难点、例题选编及作业的布置。

  (4)最后就当前的教学及工作情况,请备课组各成员相互交流,提出建议,说出不足,并由备课组长记录整理,为以后的教学计划或集体备课的适当调整提供第一手宝贵资料。

  以上几点就是我们高二数学组在本学期的工作计划,代表我们全体高二数学教师的工作打算,我们一定能够落实好学校和部门的任务,并能够按照自身的特点和所教班级的具体情况认真做好自己的教育教学工作。希望在我们全体教师的努力下,在期末联考中能取得辉煌的成绩。

数学学习计划 篇2

  首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

  第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2.了解函数的有界性、单调性、周期性和奇偶性。

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6.掌握极限的性质及四则运算法则。

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3.了解高阶导数的概念,会求简单函数的高阶导数。

  本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3.掌握用洛必达法则求未定式极限的方法。

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  第四阶段复习计划

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念。

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法。

  本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

  2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学学习计划 篇3

  为适应素质教育的需要,我们参加了初中数学研究性学习课题研究小组,为更好的参加活动,取得一定的成绩,现制定计划如下:

  一.目的要求:

  1.经历把实际问题数学化,即用数学的方式表示问题以及用数学的方法解决问题的过程,发展数学应用的能力,并体会数学与生活的密切联系和数学的应用价值;适应素质教育的需要,培养学生的动手能力,开发他们的智力。

  2.以小组合作交流学习为主,培养学生自主学习和合作交流的能力。

  3.经历查阅资料或实地测量获得所需数据、动手制作模型和撰写研究报告的过程,获得科学研究的体验、培养科学精神。

  4.带领学生根据课本知识做相关的数学小实验,激发学生探究问题,钻研问题的能力。

  5.能够综合运用数学、地理或其它学科的知识解决生活中的问题,发展社会责任感。

  二.实施措施:

  1.以自己所教学生为主要研究对象,利用自己的课堂,实施小组合作交流教学。

  2.在借鉴其他学校的教学方法的同时,开发适合自己学生的新的教学方法。

  3.利用网络的优势,学习先进的教学思想和方法,开发自己的视野,增长自己的知识。

  4.坚持平时反思和阶段反思想结合,随时总结自己研究过程中的不足与优势,作好记录,让自己的研究形成初步规模。

  总之在实施的过程中,要遵循学生的身心发展和思维形成的规律。以学生发展为本,淡化学科体系,开放学习空间,让学生不是在说教中而是在体验中成长,克服简单灌输“大道理”的教学方法。以培养学生的创新精神和实践能力为宗旨,采用启发式,讨论式和研究性学习的方式教学,在重视教学研究的同时要加强对学生的学法的研究,引导学生积极参与教学过程,并注意培养学生的成就感,同时增加课堂教学中组织学生开展辩论、动手、动脑以及观看录象等活动。教师要理顺教学与课程的关系,创设情景,逐渐走向教学与课程的整合,在教学过程中实现师生互动的教学模式,教学相长,促进师生共同发展,形成开放的、学习型的教学运行环境。

数学学习计划 篇4

  一部分同学能够在初二继续保持领先,最后成为中考中的胜利者;而另一部分同学却慢慢的被拉开差距,学习兴趣和自信心受到双重打击,对于理科学习感到越来越恐惧。

  学而思初中学科对于西城某重点中学的两个初三班级同学的成绩进行了分析,如下表,初一的时候大家的成绩比较集中,分数达到优秀(90分)的占80%以上,成绩最差的也在80分上下;而初二时的优秀率只有50%,有很大一部分同学只能拿到60多分;初三时还能保持优秀的同学不足30%,较差的同学在考试中已经在及格线之下、

  一、领先初二下期,寒假是优秀学员的必争之地

  根据很多优秀学员的'学习经验,我们能够发现一些共性的东西,比如众多优秀的学员都会选择在寒假继续进行学习,从而在春季取得一定的优势。

  (1)寒假的复习

  寒假充裕的时间,可以利用起来把上半学期中的漏洞进行很好的弥补、如果上班学期整体学习得还不错,那么应该把重点放在三角形全等的证明上,特别是构造全等的题目,随时都不应该放松警惕,最好做到每天练习一道题目,每周做一次方法归纳、因为三角形全等在中考中占据着极其重要的地位,近五年的中考压轴题都以三角形全等和三大几何变换综合的形式呈现出来、如:20__年北京中考的最后一题(原题如下),就考察到同学利用轴对称的思想来构造全等三角形、这个题目让很多同学在中考时都放弃作答,原因就是全等构造类题目难度可以出得很大、如果没有日积月累的经验,是很难在中考中完成这类题目的。

  (2)寒假的预习

  对于大多数学生来说,对于下半学期知识的提前学习比对以往知识的复习要更加重要、其原因主要可以分为以下三点:

  (1)初二下期大多数学校的进度会加快,要求同学也能提前进行预习;

  (2)初二下期的知识难度将进一步加大,寒假学习完初二下学期的重点内容,在学校讲课的时候就可以顺利听懂,在课外就可以进行专题训练,提前攻克期中、期末甚至于中考中的核心难点。

  (3)提前学习已经成为北京初中优秀学生心中共同的秘密,而按部就班的跟随学校进度学习的同学就相对落后了。

  综合以上的分析,我们便能轻易得出一个结论:要想领先初二下学期乃至初三总复习,今年的寒假必须做好规划,认真学习。

  二、寒假期间,应该如何安排数学的学习内容和时间

  上文中已经提到,寒假重点应该放在提前学习春季的知识上、而春季的课程中,最重要的知识有三块:一元二次方程、四边形和反比例函数,根据广大同学的学习安排,我们给出了一个25小时的数学学习规划,供同学、家长以及初二数学教师参考。

  计划二:不知不觉中,这个说长不长说短不短的寒假又悄无声息的来临了,以前总感觉,放假就是自由了、解放了,可以整天出去玩,不用做作业,更没人催你写作业,所以,一到放寒暑假的时候,我就像一个无人看管的疯猴子一样,整天无所事事,光想着今天该如何玩,明天该去哪……可今年不同,我已经是六年级的学生了,不能让人笑话啊!所以,咱得定一个寒假计划书,让自己的寒假变得丰富多彩起来。

  1、树立信心,努力坚持,别放弃,更不可半途而废、早晨合理安排30分钟读一读英语

  2、利用上午2节课的时间分别独立完成2科寒假作业

  3、中午适当午休

  4、和上午一样,利用下午的时间做些寒假作业,但不可一下子贪多、要均衡、科学安排、

  5、自由时间可以干一些喜欢的事情,但要控制在半小时的时间里

  6、晚饭之前是自由活动的时间,可以看电视等,但要看看新闻、

  7、读一些好的小文章,写日记或是读后感,或是精彩的摘抄

  8、每天学习时间最少保持在7—8小时(上课时间包括在内)

  9、学习时间最好固定在:上午8:30—11:30,下午14:30—17:30;晚上19:30—21:30

  10、既不要睡懒觉,也不要开夜

  11、制定学习计划,主要是以保证每科的学习时间为主、若在规定的时间内无法完成作业,应赶快根据计划更换到其他的学习科目、千万不要总出现计划总是赶不上变化的局面。

  12、晚上学习的最后一个小时为机动,目的是把白天没有解决的问题或没有完成的任务再找补一下。

  13、每天至少进行三科的复习,文理分开,擅长/喜欢和厌恶的科目交叉进行、不要前赶或后补作业、完成作业不是目的,根据作业查缺补漏,或翻书再复习一下薄弱环节才是根本。

  14、若有自己解决不了的问题,千万不要死抠或置之不理,可以打电话请教一下老师或同学。

数学学习计划 篇5

  1、数与代数

  (1)时、分、秒

  (2)测量(毫米、分米、千米和吨的认识)

  (3)万以内数的加法和减法

  (4)多位数乘一位数

  (5)分数的初步认识

  2、空间与图形 四边形

  3、倍的认识

  4、数学思想方法 数学广角(集合)

  复习目标

  1、通过了整理和复习,使学生在“万以内的加减法”、“多位数乘一位数”、“简单同分母分数加减法”等内容上进一步掌握计算方法,理解算理,并能正确进行计算和验算,进一步渗透估算的意识,体会估算的作用。

  2、通过对“四边形”、“时分秒”、“千米和吨”、“集合”等知识的复习,进一步理解周长的意义,进一步认识长方形和正方形的特征,解决有关周长计算的实际问题;加深对“1千米”、“1吨”、“1小时”、“1秒”的体验,能正确换算时间、长度、重量等单位,能采用连线、画韦恩图等方法来计算简单的集合问题,并理解其意义。

  3、通过整理和复习,使学生进一步的理解知识之间的相互联系,并进行复习方法的指导和数学思想方法的渗透,提高综合运用数学知识解决实际问题的能力,体会数学的价值,增强数学意识,发展数学思考。

  复习重难点

  1、复习重点

  (1)时、分、秒(时间计算)及测量

  (2)倍的认识

  (3)多位数乘一位数

  (4)运用周长知识灵活解决生活中的实际问题

  (5)万以内数的加法和减法

  (6)分数初步认识

  (7)集合的思想方法

  2、复习难点

  (1)万以内加减法中连续进位加法和连续退位减法

  (2)倍的认识在实际生活中的应用

  (3)运用周长知识灵活解决生活中的实际问题

  (4)时间计算

  (5)多位数乘一位数连续进位乘法及因数中间末尾有0的乘法

  (6)分数的含义

数学学习计划 篇6

  新学期数学学习计划

  新学期开始了,为了进一步深化课堂改革,贯彻新课程理念,提高本教研组教师的课堂教学能力和水平,促进教师成长,我们教研组将一如既往地开展好数学教研活动。

  一、指导思想:

  本学期的教研活动仍然以素质教育为中心,不断深入课改实验,把提高教育教学质量放在首位,严格执行“新课程标准”。以课程改革为核心,以课题研究为载体,以学生全面发展、教师业务能力不断提升为目标,以提高课堂教学效率、教学质量、减轻学生课业负担为根本,加大教学研讨力度,坚持科学育人,扎实有序地开展数学教科研工作。

  二、教研目标:

  1、以党的先进性教育为契机,进一步提高教师的职业道德。

  2、为教师们学习、交流、提高创设一个良好的研讨氛围,提供一个和谐的研讨平台。

  3、继承和发扬我组教师良好的师德修养、爱岗敬业的精神、良好的教风和教学研究的热情。在全组发扬团队意识、合作意识和竞争意识,形成浓厚的教研之风、互学之风、创新之风。

  4、在学习、实践、研讨中更新教师的教学观念,探索,总结新课程的实践经验,进一步提升本组教师的教科研能力。

  5、扎实有效地开展课题实验工作,规范数学教学常规,督促教学质量再上新台阶。

  三、教研措施:

  (一)扎实有效落实课改精神,以课改为核心开展教研活动。

  1、认真学习课程标准,研究新课标、新教材。提倡每位教师本学期在小组里讲一节公开课,以新的教学理念来指导教学,积极实践、探索新课程下的课堂教育教学规律。立足于课堂教学实践,用好新教材,通过反复探索、研究、反思、实践,把课程改革的精神扎实地落实到具体的课堂教学中。

  2、细化课改过程管理。在课程改革实验工作中,加强教材研讨、坚持推行听课制度,加强数学常规课的常规考核,收集、整理优质课件资料,并及时总结课改经验,确保课改工作落在实处。

  (二)开展多样化教研活动,以教研活动促进教师专业成长。

  1、采用集中学习、教师自学、网络学习的方法,使教师及时了解最科学的教改信息,扩展教师知识视野,不断更新教育教学理念,丰富教师的教育教学理论,提升教师的理论水平和教学教研水平。

  2、继续以小组为单位开展每周一次的教研研讨活动,开展课堂教学展示活动,使教学研讨进课堂。

  4、开展听课、评课的研讨活动,通过互相听课、说课、评课,取长补短,不断提升自己的教科研能力。

  5、开展网络教研活动,充分利用教师博客、qq群、uc论坛进行教学研讨,聆听专家讲座等活动。

  四、教研组活动安排:

  二月份:

  1、学习教研组计划,布置任务;

  2、观看教育碟片,观摩优质课件案例及评析。

  三月份:

  1、讲评一年级三个教学班的小组教研课。

  2、课后分别点评每节课的.成功之处,指出不足之处,以促共同提高、进步。

  四月份:

  1、讲评二年级的小组教研课,课后点评。

  2、复习整理以备期中考试。

  五月份:

  1、讲评三年级的小组教研课,课后且点评。

  2、观摩学习优质资源课件、案例。

  六月份:

  1、整理总结教研组工作。

  2、制订期终复习计划,迎接期终考试。

数学学习计划 篇7

  如何养成良好的数学学习习惯

  “习惯是所有伟人的奴仆,也是所有失败者的帮凶.伟人之所以伟大,得益于习惯的鼎力相助,失败者之所以失败,习惯的罪责同样不可推卸.”由此可知,良好的数学学习习惯是提高数学成绩的制胜法宝.良好的数学学习习惯有哪些呢?初中数学应该从课堂学习、课外作业和测试检查等方面养成良好的学习习惯.

  一、课堂学习的习惯

  课堂学习是学习活动的主要阵地.课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作.

  1.会笔记 上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理.做笔记实际是对数学内容的浓缩提炼.要经常翻阅笔记,加强理解,巩固记忆.另外,做笔记还能使你的注意力集中,学习效率更高.

  2.会比较 在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的.

  3.会质疑 “学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问.积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维.学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍.

  4.会分析 一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的.如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记.再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系.只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法.要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维.

  5.会合作 英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性.我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见.在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力.

  二、课外作业的习惯

  课外作业是数学学习活动的一个组成部分,它包括:复习、作业等.

  1.复习 及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容.首先凭大脑的追忆,想不起来再阅读课本及笔记.在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理.同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识.

  2.作业 会学习的同学都是当天作业当天完成,先复习,后做作业.一定要独立完成,决不能依赖别人.书写一定要整洁,逻辑一定要条理.对作业要自我检查,及时改正存在的错误,

  三、测试、检查的习惯

  1.认真总结

  测试、检查前,可以借助于笔记,把某一阶段的知识加以系统化、深化,弥补知识的缺陷,进一步掌握所学知识.

  2.认真反思

  测试、检查后,通过回顾反思,查清知识缺陷和薄弱环节,寻找失误的原因,改进学习方法,明确努力方向,使以后的测试、检查取得成功.

  良好的学习习惯是提高我们学习成绩的决定因素,但必须持之以恒. 如何预习数学教材

  人的智力没有大的差别,掌握好的学习方法是提高数学能力的前提.会预习数学教材就是一种好的学习方法.如果做好课前预习教材,带着问题或兴趣进课堂,那么就会产生一种想学、想问、想练的良好心理和思维习惯,有利于集中精力应付新课的重点和弄不懂的难点.可以按以下方法预习.

  读—由粗到精

  拿过教材后,先将预习内容浏览一遍,了解本节要学习什么内容,确定出预习的重点,然后根据重点内容再进行精读.

  在预习过程中,对概念、定义、定理、公式等的理解是最重要的,它们是解决问题的关键.因此在预习这部分内容时,重点不是放在对它们的记忆上,而是放在对它们的理解和推导上.不仅要能用自己的语言叙述它们的内涵,也会进一步用符号语言、图形语言来表达它们的实质,更要结合已有的知识对它们进行证明,并达到会对公式进行适当的变形,也会判断定理的逆命题是否成立的目的.

  在预习过程中,同学往往有许多不明白的地方,可以在书上记录一些自己的看法及不明白的问题,以便上课时,通过老师的讲解、同伴们的合作,充分探究知识的内涵,从而加深自己对知识的理解,形成符合自己认知特点的知识结构.

  练—初步应用

  应用所学知识解决问题是数学学习的目的.在预习过程中,要求在预习完知识点后,再预习例题,并将课本中配套的简单练习做一下.

  在预习例题时,要做好如下思考:属于哪种类型题,涉及到哪些知识点?用到什么解题方法?每一步的依据是什么?有没有其它解题方法?等等.课本例题的选取是极有代表性的题目,它的难度通常不太大,多是对所学新知识的简单利用,在理解概念、定义、定理及公式的基础上,完全有能力自己去解决.为了巩固预习效果,需要做适量的练习,教材中的简单的、与例题相似的题目是我们自学时最好的练习.

  思—总结提升

  在预习过程中会产生各种各样的问题,会犯各式各样的错误,通过反思加深对存在问题的记忆,以便上课时在教师和同学的帮助下,有针对性地解决.

  数学思想及常见的解题方法

  (一)数学思想

  常见的有四大数学思想:函数与方程、转化与化归、分类讨论、数形结合.

  1.函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型,然后通过解方程(组)来使问题获解.函数与方程有密切的关系,如一元一次函数baxy,就可以看作关于x、y的二元方程0ybax;二元方程0ybax可以看成y是x的一次函数.可以说,函数的研究离不开方程.列方程、解方程和研究方程的特性,都是应用方程思想的体现.

  2.转化与化归 转化与化归是把不熟悉、不规范、复杂的问题转化为熟悉、规范、简单的问题.它可以在数与数、形与形、数与形之间进行转换;消元法、换元法、数形结合法、求值求范围问题等等,都体现了转化与化归思想.如很多四边形的问题可以转化为三角形的问题来研究;研究两直线的位置关系可以转化为研究角的数量关系;如学完初一有理数的运算法则后,将几种运算法则综合起来去认识:减法、乘法是转化为加法来研究的,除法、乘方是转化为乘法来研究的.再如求不规则图形的面积可以将其分割或将其补充,转化为规则图形来求,等等.

  3.分类讨论 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论思想.引起分类讨论的原因主要是以下几个方面:

  (1) 问题所涉及到的数学概念是分类进行定义的.如|a|的定义分a>0、a=0、a<0三种情况.

  (2) 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的.如点与圆的位置关系可以分为三种情况.

  (3) 解含有参数的题目时,必须根据参数的不同取值范围进行讨论.如研究二次函数cbxaxy2的图象的开口方向时,分a>0和a<0两种情况讨论;研究其图象与x轴的位置时,就△>0,△>0,△<0,△=0三种情况进行考虑.

  (4)解某些条件开放题时,需要根据条件的几种可能情况进行分类.如“过一个三角形一边上一点,做一条直线,将原三角形分为两部分,使截得的三角形与原三角形相似,共有几种办法”,这就需要就直线的位置进行分类,共有四种办法.再如证明圆周角定理时,就圆心在圆周角的内部、外部、边上三种情况进行证明等.

  进行分类讨论时,要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复.

  4.数形结合 初中数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如简单的几何图形、三角形、四边形、相似形、解直角三角形、圆等;一类是关于数形的结合,如数轴上的点和数之间的对应关系,再如锐角三角函数的定义是借助于直角三角形来定义的,等.

  数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质,再如“已知线段AB=2cm,在直线AB上有一点C,且BC=6cm,则线段AC的长是 ”,解本题可以画出图形,找出点C的两种不同位置;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用函数解析式来精确地阐明函数图象的几何性质等,再如根据圆心到直线的距离来判断直线与圆的位置关系或根据两圆的半径与圆心距之间的数量关系来判断两圆之间的位置关系等.

【数学学习计划七篇】相关文章:

数学小学学习计划七篇01-03

学困生数学学习计划范文-学习计划12-30

初三数学高效学习计划-学习计划12-22

小学数学业务学习计划-学习计划12-22

小学数学教师个人学习计划-学习计划12-20

数学寒假学习计划(14篇)01-05

数学学习计划(15篇)12-11

数学学习计划范文八篇12-27

有关数学学习计划三篇12-20

数学学习计划模板五篇12-16