第一课时
课题:轴对称
教学内容:教材第3~4页例1和例2。
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学准备:幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2.
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2) 在研究的基础上,让学生用铅笔试画。
(3) 通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一 -----第1、2题。
2、课外作业:
板书设计:
轴 对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
1、两个图形成轴对称的数学概念是“如果平面到其自身的一一变换的每对对应点A、A′,都垂直于同一直线l,且被直线l 平分,则这种变换叫做关于直线l的轴对称。直线l 叫做对称轴,对应点A 和A′叫做关于轴l的对称点,在直线反射下的对应图形叫做关于轴l 的对称图形。”(马忠林,《几何学》,吉林人民出版社,1984年4月第1版。)在初中数学中,概括成“把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴,折叠后重合的点是对应点,叫做对称点。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)在小学阶段,我们不要求学生说得这么准确,只要学生能用自己的语言把“折叠”“重合”这些基本特征概括出来就可以。
2、再如,图形成轴对称的基本性质,在初中数学中概括成“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。”(《义务教育课程标准实验教科书数学八年级上册》,人民教育出版社,2004年12月第1版。)我们不要求学生概括出这样的结论,只要学生能像书上的学生那样直观描述就可以了,使学生知道“对应点到对称轴的距离相等”。
第二课时
课题:旋 转
教学内容:教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5.课内练习:
2.第6页2题。
3.第9页4题、
课后作业:
板书设计:
旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
第三课时
课题: 欣 赏 设 计
教学内容:教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学反思:
第四课时
课题:欣赏与设计练习课
教学内容:教材第8~11页。
教学目标
1.通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。
2.通过欣赏图案,发展学生的审美意识和空间观念。
3.自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。
重点难点 :
1.进一步利用对称、平移、旋转等方法绘制精美的图案。
2.加深感受图形的内在美,培养学生的审美情趣。
教学准备:
课件、方格纸、正方形白板纸、手工纸三张及剪刀等。
教学过程:
一、展览导入
课前让学生收集图案,以小组为单位进行交流。
思考:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合思考说一说它的特点。
二、学习新课
(一)尝试创造:
让学生做第8页第1、2题。
1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、 提出三个步骤:
(1)先选择一个喜欢的图形;
(2)再确定你选用的对称、平移和旋转的方法;
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、巩固练习
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2.作品展示。
3、独立观察并尝试做第9页第5题。
四、全课总结
全班交流各自的作品,选出好的作品互相评价,全班展览。
板书设计:
欣赏和设计练习课
图片1 图片2
教学反思:
第二单元 因数和倍数
课题:因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。{用已知长方形面积设计长方形形状作引入}
1、出示主题图,飞机飞行电子课本例图让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数也叫做约数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。