六年级奥数练习题及答案

时间:2024-06-28 22:24:47 秀雯 练习题 我要投稿

六年级奥数练习题及答案

  在日常学习和工作生活中,我们都经常看到练习题的身影,只有认真完成作业,积极地发挥每一道习题特殊的功能和作用,才能有效地提高我们的思维能力,深化我们对知识的理解。你所了解的习题是什么样的呢?下面是小编收集整理的六年级奥数练习题及答案,希望对大家有所帮助。

  六年级奥数练习题及答案 1

  1、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

  答案与解析:

  把路程当作1,得到时间系数

  去时时间系数:1/3÷12+2/3÷30

  返回时间系数:3/5÷12+2/5÷30

  两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

  去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

  路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

  2、分母不大于60,分子小于6的最简真分数有____个?

  答案与解析:

  分类讨论:

  (1)分子是1,分母是2~60的最简真分数有59个:

  (2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);

  (3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);

  (4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);

  (5)分子是5,分母是6~60,其中非5的`倍数有55-55÷5—44(个)。

  这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个)。

  六年级奥数练习题及答案 2

  1、某个体商人以年利息14%的利率借别人4500元,第一年末偿还2130元,第二年以某种货物80件偿还一部分,第三年还2736元结清,他第二年末还债的货物每件价值多少元?

  2、小明于今年七月一日在银行存了活期储蓄100元,如果年利率是1.98%,到明年七月一日,小明可以得到多少利息?

  3、买了8000元的国家建设债卷,定期3年,到期他取回本息一共10284元,这种建设债卷的年利率是多少?

  答案与解析:

  1、解:根据“总利息=本金×利率×时间”

  第一年末的本利和:4500+4500×14%×1=5130(元)

  第二年起计息的'本金:5130-2130=3000(元)

  第二年末的本利和:3000+3000×14%×1=3420(元)

  第三年的本利和为2736元,故第三年初的本金为:2736÷(1+14%)=2736÷1.14=2400(元)

  第二年末已还款的金额为3420-2400=1020(元)

  每件货物的单价为1020÷80=12.75(元)

  答:他第二年末还债的货物每件价值12.75元

  2、解:1000×1.98%×1×(1-20%)=15.84(元)

  答:小明可以得到15.84元利息

  3、解:设年利率为X%

  (1)(单利)

  8000+8000×X%×3=10284

  X%=9.52%

  (2)(复利)

  8000(1+X%)3=10284

  X%=9.52%

  答:这种建设债卷利率是9.52%

  六年级奥数练习题及答案 3

  1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?

  答案与解析:

  人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到

  3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183

  答:陕西省至少有183人的头发根数一样多。

  2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?

  答案与解析:

  ①做正方形的另一条对角线。得到四个完全相同的.等腰直角三角形。

  ②一个等腰直角三角形的面积是:

  8÷2=4(直角边)

  4×4÷2=8(平方米)

  ③四个等腰直角三角形的面积,即正方形的面积。

  8×4=32(平方米)

  六年级奥数练习题及答案 4

  1、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。

  答案与解析:

  这个题目和第8题比较近似。但比第8题复杂些!

  大轿车行完全程比小轿车多17-5+4=16分钟

  所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟

  小轿车行完全程需要80×80%=64分钟

  由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

  大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开

  小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。

  说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

  既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

  那么追上的`时间是小轿车到达之前4÷(1-80%)×80%=16分钟

  所以,是在大轿车出发后17+64-16=65分钟追上。

  所以此时的时刻是11时05分。

  2、客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。

  答案与解析:

  第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。那么有120-20=100千米即为甲、乙的全长。

  六年级奥数练习题及答案 5

  (1)小阳期终考试时语文和数学的平均分数是96分,数学比语文多8分。语文是( )分,数学是( )分。

  (2)甲、乙两个仓库共存大米42吨,如果从甲仓库调3吨大米到乙仓库,那么两个仓库所存的大米就正好同样多。原来甲仓库存大米( )吨,乙仓库存大米( )吨。

  (3)爸爸和爷爷1994年的年龄加在一起是127岁,十年前爷爷比爸爸大37岁,爷爷是( )年出生的。

  (4)有一个停车场上,现有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子。其中摩托车有( )辆。

  (5)参加少年宫科技小组的同学,今年比去年的3倍少35人,去年比今年少41人,今年参加科技小组的同学有( )人。

  (6)父亲今年47岁,儿子今年19岁,( )年前父亲的.年龄是儿子的5倍。

  (7)一个植树小组植树,如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。这个植树小组有( )人,一共要栽( )棵树。

  2.甲、乙、丙三数之和是1160,甲是乙的一半,乙是丙的2倍。三个数各是多少?

  3.某招待所开会,每个房间住3人,则36人没床位;每个房间住4人,则还有13人没床位,如果每个房间住5人,那么情况又怎么样?

  4.小明读一本书,第一天读83页,第二天读74页,第三天读71页,第四天读64页,第五天读的页数比这五天中平均读的页数要多3.2页。小明第五天读了多少页?

  5.在桥上测量桥高,把绳子对折后垂到水面时绳子还剩下8米;把绳子三折后,垂到水面时绳子还剩下2米,求桥高和绳长各是多少米。

  6.44名学生去划船,一共乘坐10只船,其中每只大船坐6人,每只小船坐4人。大船和小船各有多少只?

  7.实验小学四年级举行数学竞赛,一共出了10道题,答对一题得10分,答错一题倒扣5分。张华把10道题全部做完,结果得了70分。他答对了几道题?

  8.买4支铅笔和5块橡皮,共付6元;买同样的6支铅笔和2块橡皮,共付4.60元。每支铅笔和每块橡皮各多少钱?

  9.修一条路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,最后还剩14米没修。这条路长多少米?

  10.张强用270元买了一件外衣,一顶帽子和一双鞋子,外衣比鞋贵140元,买外衣和鞋比帽子多花210元,张强买这双鞋花了多少钱?

  11.红光厂计划每天生产电冰箱40台,经过技术革新后,每天比原计划多生产5台,这样提前2天完成了这批生产任务,并且比原计划还多生产了35台。实际生产了多少台电冰箱?

  12.有16位教授,有人带1个研究生,有人带2个研究生,也有人带3个研究生,他们共带了27个研究生,其中带1个研究生的教授人数与带2个和3个研究生的教授总数一样多,问带2个研究生的教授有几人?

  小学奥数应用题练习六答案

  (1)语文92分,数学100分;(2)甲仓24吨,乙仓18吨;(3)1912年。(4)10辆(5)79人(6)12年(7)9人,59棵

  2.1160÷(1+2+1)=290(甲、丙) 290×2=580(乙)

  3.解法一:(36-13)+(4-3)=23(个)23-(4×23+13)÷5=2(个)(空了2个房间)解法二:解:设有x个房间,3x+36=4x+13x x=23 23-(4×23+13)÷5=2(个)

  4.解法一:(83+74+71+64)÷4+3.2÷4+3.2=77(页)

  解法二:解:设第五天读x页 83+74+71+64+x=5(x-3.2)

  x=77

  5.解法一:(8×2-2×3)÷(3-2)=10(米)(桥高)(10+8)×2=36(米)(绳长)解法二:解:设桥高x米2(x+8)=3;(x+2) x=10(10+8)×2=36(米)

  6.(44-4×10)÷(6-4)=2(只)(大船)10-2=8(只)(小船)

  7.解法一:10-(10×10-70)÷(10+5)=8(道)

  解法二:解:,设答对x道10x-5(10-X)=70 x=8

  8.(6×3-4.60×2)÷(5×3-2×2)=0.80(元)(橡皮)(6-0.8×5)+4=0.50(元)(铅笔)

  9.[(14+30-20)×2+6]×2=108(米)

  10.[(270+210)÷2-140]÷2=50(元)

  11.解法一:[(40+5)×2+35]÷5=25(天)(40+5)×(25-2)=1035(台)

  解法二:解:设原计划x天完成40x+35=(40+5)(x-2)x=25 40×25+35=1035(台)

  12.解法一:16÷2=8(人)27-8=19(个)(3×8-19)÷(3-2)=5(人)

  解法二:解:设带2个研究生的教授有x人,则带3个研究生的教

  授为(16÷2-x)人

  16÷2+2x+3(16÷2-x)=27 8+2x+3(8-x)=27 x=5

【六年级奥数练习题及答案】相关文章:

六年级奥数练习题及答案08-12

奥数经典练习题05-28

经典的奥数练习题05-29

奥数试题及答案09-24

经典奥数试题及答案09-24

初中奥数经典的练习题05-29

小学奥数练习题07-28

经典的初中奥数练习题05-30

小升初经典的奥数试题及答案09-24

初中奥数试题及答案09-24