对数函数的说课稿

时间:2024-08-13 22:20:37 说课稿 我要投稿

对数函数的说课稿(精选5篇)

  作为一名教学工作者,通常需要准备好一份说课稿,说课稿有助于顺利而有效地开展教学活动。快来参考说课稿是怎么写的吧!以下是小编为大家整理的对数函数的说课稿(精选5篇),希望能够帮助到大家。

对数函数的说课稿(精选5篇)

  对数函数的说课稿1

  一、说教材

  1、地位和作用

  本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

  2、教学目标的确定及依据

  依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1) 理解对数函数的概念、掌握对数函数的图象和性质。

  (2) 培养学生自主学习、综合归纳、数形结合的能力。

  (3) 培养学生用类比方法探索研究数学问题的素养;

  (4) 培养学生对待知识的科学态度、勇于探索和创新的精神。

  (5) 在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

  难点:底数a对对数函数的图象和性质的影响;

  关键:对数函数与指数函数的类比教学

  由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。

  (2)采用"从特殊到一般"、"从具体到抽象"的方法。

  (3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。

  (4)投影仪演示法。

  在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生通过分析、探索,得出对数函数的定义。

  (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教程

  在认真分析教材、教法、学法的基础上,设计教学过程如下:

  (一) 创设问题情景、提出问题

  在某细胞分裂过程中,细胞个数y是分裂次数x的函数 对数函数说课稿 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

  问题一:这是一个怎样的函数模型类型呢?

  设计意图:复习指数函数

  问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

  设计意图:为了引出对数函数

  问题三:在关系式 对数函数说课稿 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

  设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。

  (二) 意义建构:

  1. 对数函数的概念:

  同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为 对数函数说课稿 ,我们也可以把它改为对数式, 对数函数说课稿 ,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。

  设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

  但在习惯上,我们用x表示自变量,用y表示函数值

  问题一:你能把以上两个函数表示出来吗?

  问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)

  问题三:在 对数函数说课稿 中,a有什么限制条件吗?请结合指数式给以解释。

  问题四:你能根据指数函数的定义给出对数函数的定义吗?

  问题五:对数函数说课稿与对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

  问题六:对数函数说课稿与 对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

  设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域

  2. 对数函数的图象与性质

  问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

  (提示学生进行类比学习)

  合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的`图象,并观察各组函数的图象,探求他们之间的关系。

  (1) 对数函数说课稿

  (2) 对数函数说课稿

  合作探究2:当 对数函数说课稿 函数 对数函数说课稿 与 对数函数说课稿 的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)

  合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。

  (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

  问题1:对数函数 对数函数说课稿 ( 对数函数说课稿 )是否具有奇偶性,为什么?

  问题2:对数函数 对数函数说课稿 ( 对数函数说课稿 ),当 对数函数说课稿 时,x取何值,y 对数函数说课稿 0,x取何值,y 对数函数呢?

  问题3:对数式 对数函数说课稿 的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。

  知识拓展:函数 对数函数说课稿 称为 对数函数说课稿 的反函数,反之,函数 对数函数说课稿 也称为 对数函数说课稿 的反函数。一般地,如果函数 对数函数说课稿 存在反函数,那么它的反函数记作为 对数函数说课稿

  (三) 数学应用

  1. 例题

  例1:求下列函数的定义域

  (1) 对数函数说课稿

  (2) 对数函数说课稿 ( 对数函数说课稿 )

  (该题主要考查对数函数 对数函数说课稿 的定义域 对数函数说课稿 这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

  例2:利用对数函数的性质,比较下列各组数中两个数的大小:

  (1) 对数函数说课稿 , 对数函数说课稿

  (2) 对数函数说课稿 , 对数函数说课稿

  (3) 对数函数说课稿 , 对数函数说课稿

  (4) 对数函数说课稿 , 对数函数说课稿 ,

  (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

  合作探究4:已知 对数函数说课稿 ,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)

  本题可以从以下几方面加以引导点拨

  1.本题的难点在哪儿?

  2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系

  本题也可以从形的角度来思考。

  (四) 目标检测

  P69 1,2,3

  (五) 课堂小结

  由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)

  对数函数的说课稿2

  我今天说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位老师批评指正。

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

  (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。

  2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1.从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=log x)值的.对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

  方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业 :

  (1)完成P78 2、3题

  (2)当底数a>1与0

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

  对数函数的说课稿3

  一、说教材

  1、教材的地位和作用

  函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识。

  2、教学目标的确定及依据

  根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

  (1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用对数函数的`性质解决简单的问题。

  (2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

  (3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

  3、教学重点与难点

  重点:对数函数的意义、图像与性质。

  难点:对数函数性质中对于在与两种情况函数值的不同变化。

  二、说教法

  学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

  1、教学方法:

  (1)启发引导学生实验、观察、联想、思考、分析、归纳;

  (2)采用“从特殊到一般”、“从具体到抽象”的方法;

  (3)渗透类比、数形结合、分类讨论等数学思想方法。

  2、教学手段:

  计算机多媒体辅助教学。

  三、说学法

  “授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)类比学习:与指数函数类比学习对数函数的图像与性质。

  (2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

  (3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,使问题得以圆满解决。

  四、说教程

  1、温故知新

  我通过复习细胞分裂问题,由指数函数引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数。

  设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  2、探求新知

  在理解对数函数的意义的基础上,研究对数函数的图像与性质。关键是抓住对数函数与指数函数互为反函数的关系,图像关于直线对称,从而作出对数函数的图像。由学生自主作出对数函数和的图像后,引导学生填写所发表格(该表格一列填有在及两种情况下的图像与性质),通过类比学习,小组讨论,采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。

  在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

  设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、

  观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,协作构建起新的知识。这充分体现了基于建构主义学习理论的探究定向性学习和主动合作式学习。

  3、课堂研究,巩固应用

  例1主要利用对数函数的定义域是来求解。在这个例题中,重点、难点是第三小题的理解。这一小题是课后练习“求函数(其中)的定义域”这道题目的变形。我觉得让学生直接解决课后练习有较大困难,因此设计了“求函数的定义域”这一小题;理解了这个小题,课后练习也就迎刃而解了。而在解题过程中,学生发现求解不等式是一个难点。我在解决这一难点时,采用了两种方法:一是启发学生将“0”写成1的对数,并且是写成,这样就可以利用对数函数的单调性求出不等式的解,最后向学生介绍不等式是一个对数不等式;二是引导学生观察对数函数的图像,通过数形结合来求解不等式。

  例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,要分底数及两种情况。

  设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充

  分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的

  解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

  4、课外研究

  使学生学会知识的迁移,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

  5、课堂小结

  引导学生进行知识回顾,使学生对本节课有一个整体把握。从三方面进行小结:

  (1)理解对数函数的意义;

  (2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;

  (3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

  解法,体会分类讨论的思想方法。

  6、课外作业

  公式无法显示,完整WORD文档点击下载此文件

  对数函数的说课稿4

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:理解对数函数的概念,掌握对数函数的图象及性质。

  难点:由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的实例来反应对数函数的`重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  3、总结提炼

  (1)自主探究新知识的方法;

  (2)本节课应用了哪些数学思想。

  4、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7.8

  对数函数的说课稿5

  教学目标:

  (一)教学知识点:

  1.对数函数的概念;

  2.对数函数的图象和性质.

  (二)能力训练要求:

  1.理解对数函数的概念;

  2.掌握对数函数的图象和性质.

  (三)德育渗透目标:

  1.用联系的观点分析问题;

  2.认识事物之间的互相转化.

  教学重点:

  对数函数的图象和性质

  教学难点:

  对数函数与指数函数的关系

  教学方法:

  联想、类比、发现、探索

  教学辅助:

  多媒体

  教学过程:

  一、引入对数函数的概念

  由学生的预习,可以直接回答“对数函数的概念”

  由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

  问题:

  1.指数函数是否存在反函数?

  2.求指数函数的反函数.

  ①;

  ②;

  ③指出反函数的定义域.

  3.结论

  所以函数与指数函数互为反函数.

  这节课我们所要研究的'便是指数函数的反函数——对数函数.

  二、讲授新课

  1.对数函数的定义:

  定义域:(0,+∞);值域:(-∞,+∞)

  2.对数函数的图象和性质:

  因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

  因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

  研究指数函数时,我们分别研究了底数和两种情形.

  那么我们可以画出与图象关于直线对称的曲线得到的图象.

  还可以画出与图象关于直线对称的曲线得到的图象.

  请同学们作出与的草图,并观察它们具有一些什么特征?

【对数函数的说课稿】相关文章:

对数函数的说课稿01-12

《对数函数的图像与性质》说课稿11-11

《对数函数》说课稿(精选20篇)06-13

对数函数说课稿12篇06-06

《对数函数的图像与性质》的说课稿范文08-28

对数函数教学反思07-01

《对数函数》教学反思08-31

《对数函数》的教学反思10-19

对数函数的教学反思09-20

对数函数求导公式06-05