《函数的概念》说课稿

时间:2021-01-31 09:57:07 说课稿 我要投稿

《函数的概念》说课稿

  作为一名教师,常常要写一份优秀的说课稿,借助说课稿可以让教学工作更科学化。那么说课稿应该怎么写才合适呢?以下是小编为大家收集的《函数的概念》说课稿,仅供参考,大家一起来看看吧。

《函数的概念》说课稿

  《函数的概念》说课稿1

  “说课”有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。以下是小编整理的函数的概念说课稿,希望对大家有帮助!

  尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2、1的内容,本节课的内容是函数概念。函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。

  (二)过程与方法

  通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。

  (三)情感态度价值观

  在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。

  利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。

  首先利用多媒体展示生活实例

  (1)某山的海拔高度与气温的变化关系;

  (2)汽车匀速行驶,路程和时间的变化关系;

  (3)沸点和气压的变化关系。

  引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。

  预设:

  ①都有两个非空数集A、B;

  ②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。

  接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题

  问题1:函数的概念是什么?初中与高中对函数概念的定义的异同点是什么?符号“x”的含义是什么?

  问题2:构成函数的三要素是什么?

  问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间?

  十分钟过后,组织学生进行全班交流。

  预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。

  函数的三要素包括:定义域、值域、对应法则。

  区间:

  为了使得学生对函数概念的本质了解的更加深入此时进行追问

  追问1:初中的函数概念与高中的函数概念有什么异同点?

  讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。

  追问2:符号“y=f(x)”的.含义是什么?“y=g(x)”可以表示函数吗?

  讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。

  追问3:对应关系f可以是什么形式?

  讲解过程中注意强调,对应关系f可以是解析式、图象、表格

  追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。

  讲解过程中注意强调,函数的三要素缺一不可。

  追问5:用区间表示三个实例的定义域和值域。

  设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。

  (三)课堂练习

  接下来是巩固提高环节。

  组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定义域和值域并用区间表示。

  这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。

  (四)小结作业

  在课程的最后我会提问:今天有什么收获?

  引导学生回顾:函数的概念、函数的三要素、区间的表示。

  本节课的课后作业我设计为:

  1、求解下列函数的值

  (1)已知f(x)=5x-3,求发(x)=4。

  (2)已知

  求g(2)。

  2、如图,某灌溉渠道的横截面是等腰梯形,底宽2m,渠深1、8m,边坡的倾角是45°

  (1)试用解析表达式将横截面中水的面积A表示成水深h的函数

  (2)确定函数的定义域和值域

  (3)尝试绘制函数的图象

  这样的设计能让学生理解本节课的核心,并为下节课学习函数的表示方法做铺垫。

  《函数的概念》说课稿2

  一、说课内容:

  苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

  二、教材分析:

  1、教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2、教学目标和要求:

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

  3、教学重点:对二次函数概念的理解。

  4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  三、教法学法设计:

  1、从创设情境入手,通过知识再现,孕伏教学过程

  2、从学生活动出发,通过以旧引新,顺势教学过程

  3、利用探索、研究手段,通过思维深入,领悟教学过程

  四、教学过程:

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (=x+b,≠0;=x ,≠0;= , ≠0)

  3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件? 值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1、(1)圆的半径是r(c)时,面积s (c)与半径之间的关系是什么?

  解:s=πr(r>0)

  例2、用周长为20的篱笆围成矩形场地,场地面积()与矩形一边长x()之间的关系是什么?

  解: =x(20/2-x)=x(10-x)=-x+10x (0<x<10)< p="">

  例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和(元)与x之间的关系是什么(不考虑利息税)?

  解: =100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0<x<1)< p="">

  教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:

  (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。

  (2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1、强调“形如”,即由形来定义函数名称。二次函数即 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2、在 =ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3、为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4、在例3中,二次函数=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以为零?

  由例1可知,b和c均可为零.

  若b=0,则=ax2+c;

  若c=0,则=ax2+bx;

  若b=c=0,则=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而=ax2+bx+c是二次函数的一般形式.

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)=3(x-1)+1 (2)

  (3)s=3-2t (4)=(x+3)- x

  (5) s=10πr (6) =2+2x

  (8)=x4+2x2+1(可指出是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1、已知一个直角三角形的两条直角边长的和是10c。

  (1)当它的一条直角边的长为4、5c时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Sc2,其中一条直角边为xc,求S关

  于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2、已知正方体的棱长为xc,它的表面积为Sc2,体积为Vc3。

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3、设圆柱的高为h(c)是常量,底面半径为rc,底面周长为Cc,圆柱的体积为Vc3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4、 篱笆墙长30,靠墙围成一个矩形花坛,写出花坛面积(2)与长x之间的函数关系式,并指出自变量的取值范围.

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

  (五)拓展延伸

  1、 已知二次函数=ax2+bx+c,当 x=0时,=0;x=1时,=2;x= -1时,=1.求a、b、c,并写出函数解析式.

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2、确定下列函数中的值

  (1)如果函数= x^2-3+2 +x+1是二次函数,则的值一定是______

  (2)如果函数=(-3)x^2-3+2+x+1是二次函数,则的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0、

  (六) 小结思考:

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置:

  必做题:

  1、 正方形的边长为4,如果边长增加x,则面积增加,求关于x 的函数关系式。这个函数是二次函数吗?

  2、 在长20c,宽15c的矩形木板的四角上各锯掉一个边长为xc的正方形,写出余下木板的面积(c2)与正方形边长x(c)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1、已知函数 是二次函数,求的值。

  2、试在平面直角坐标系画出二次函数=x2和=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  五、教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

【《函数的概念》说课稿】相关文章:

1.人教版高中数学必修一说课稿 函数的概念说课稿

2.一次函数和正比例函数的概念   

3.集合与函数的概念测试卷

4.余弦函数的性质说课稿

5.对数函数说课稿

6.对数函数说课稿

7.二次函数的图像说课稿

8.高教版数学说课稿 分段函数的实际应用说课稿

9.对数函数的图像与性质说课稿