“平均数”教学设计

时间:2023-12-30 17:29:28 教学设计 我要投稿

“平均数”教学设计

  作为一名默默奉献的教育工作者,就有可能用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们该怎么去写教学设计呢?以下是小编为大家收集的“平均数”教学设计,仅供参考,希望能够帮助到大家。

“平均数”教学设计

  “平均数”教学设计 篇1

  教学内容:人教版四年级下第90—91页例1、例2及相关内容。

  教学目标:

  1、使学生理解平均数的含义,知道平均数的求法。

  2、了解平均数在统计学上的意义。

  3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

  教学重点:理解平均数的意义,掌握平均数的方法。

  教学难点:理解平均数的意义。

  教、学具准备:课件、题卡、磁扣等。

  一、 导入

  同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

  二、 讲授新知

  1、探究平均数的方法

  师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

  师:大家看,他们每人各运了几个球?

  师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

  生:男生成绩好。女生总数12,男生总数15。

  师:对,我们比较总数,可以看出男生队成绩更好。

  师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

  生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

  生:4.

  师:用4表示可以吗?

  生:可以。

  师:男生队用几表示呢?

  生:5.

  师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

  生:小组合作。

  师:哪个小组愿意派代表汇报一下?(只出示女生的)

  生:女生队2号最多,给1号2个,给3号1个。

  师:结果怎样呢?

  生:让他们变得同样多。

  师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

  师:大家听清楚了吗?谁愿意到黑板上摆一摆?

  生:移多补少演示。

  师:大家同意吗?

  师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。

  师:你们用移多补少的方法表示出男生队的平均成绩吗?

  生:到前面来演示。

  师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

  生:列算式。学生到黑板上演示。

  (4+5+6)÷3

  =15÷3

  =5(个)

  师:你是怎么想的?(写的同学说说自己的想法)

  生:用男生队运球的总数除以3,就是每人平均运5个球。

  师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

  师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

  师:你能用合并平分的方法,求出女生队的平均数吗?

  生:汇报

  师:现在我们来说一说哪一个队成绩更好呢?

  生:男生队

  师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

  2、平均数的作用

  师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

  生:公平,再观察一下,他们为什么不同意。

  不公平,人数不同。

  师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

  生:4.

  师:你们怎么这么快就知道了呢?

  师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

  师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

  师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

  生:12个。

  师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

  3、平均数的性质

  师:请大家观察女生队的`成绩

  我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

  平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

  生:4比7少3个,比2多2个,比3多1个。

  师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

  师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

  生:不是

  师:平均数5和男生队每个人实际运球数比较一下。

  生:平均数5和2号选手实际运球数一样多。

  师:那么这个5和2号的成绩5表示的意义一样吗?

  生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

  师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

  习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

  师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

  师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

  生汇报:

  师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

  1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

  2:计算统计平均数的作用,在于衡量事物要均等。

  所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

  三、习题

  1、课件出示“小小”冷饮店习题。

  2、水深。

  四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

  板书设计

  平均数

  合并平分 移

  “平均数”教学设计 篇2

  教学目标:

  1、使学生在丰富的具体问题情境中,感受平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的.平均数(结果是整数。)

  2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、使学生进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

  教学重点:体会平均数的意义,掌握求平均数的方法。

  教学难点:理解平均数的意义。

  教学过程:

  一、 创设情境,提出问题

  1、 同学们,喜欢玩套圈游戏吗?前几天我校三(1)班举行了套圈比赛,想不想去看看?

  2、 (课件)师说:现在是第一小组的男女生进行比赛,每个人套15个圈。第一场单人赛开始了,男生一号队员进场(音乐,情境。)他套中几个?(7)再来看女生1号队员,(音乐。)套中几个?(4)这场比赛几个男生?几个女生?谁套得准一些?男同学为我们男生鼓鼓掌。再来看第二场双人赛,(比赛的音乐)四人同时走出来,同时套,这次比赛,几个男生?几个女生?谁套得准一些?为什么?(7+2=98+5=13)女同学为我们女生鼓鼓掌。第三场团体比赛开始了,哇,来了这么多同学,男生有几个人?女生有几个人?谁获胜?谁先说就先鼓掌。鼓掌完了问:你们男生有没有意见?有意见。(如果学生说因为,老师赶紧引过来你直接告诉大家你有没有意见?你认为哪个队获胜?)看来这场比赛情况比较复杂,怎样可以知道哪个队获胜呢?这就是我们今天要研究的内容。(三次比赛的数据不能一样。)(套圈图淡去,统计图渐出。)

  “平均数”教学设计 篇3

  教学内容:实验教材三年级下册第三单元。

  课题:求平均数。

  教学目标:

  1.知道平均数的含义和求法。

  2.加强学生对平均数在统计学上意义的理解。

  3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  教师重点和难点:理解平均数的含义,掌握求平均数的方法:“移多补少”的实际意义和应用。

  教具/学具准备:多媒体课件、圆片、计算器。

  教学过程

  一、创设情境、激趣导入

  1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。

  2.感知

  (1)学生思考,想象移的过程。

  (2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?

  (3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。

  今天,我们就来认识一下“平均数”这个新朋友,好吗?

  (板书:平均数)

  二、探究新知

  1.理解含义,探求方法。

  提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。

  师:看着面前的圆片,你能提出什么问题,

  生:我想使每排的圆片同样多?

  师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。

  小组活动讨论。

  汇报交流。

  生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。

  生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。

  师:不管怎样移,我们都是把个数多的移给个数少的

  请你想一想:在刚才移动过程中,有什么相同的规律?

  根据学生回答板书:不相等 相等

  小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。

  2.初步应用,内化拓展。

  师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)

  生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。

  生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。

  出示幻灯:身高情况

  先估计一下平均身高大约是多少?(148,147,149,……)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。

  生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。

  生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。

  三、拓展练习

  1.应用一。

  小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的.电话费、电费,上周的气温情况等)

  交流反馈。

  师:看了两(三)组平均体重数据有何启发?[根据“平均数”可以对两(三)组体重进行比较]

  师:教师还收集了一组数据,发现我校第一季度用电情况如下表:

  1月

  2月

  3月

  800度

  1000度

  900度

  (1)说说从表中你有什么发现?

  (2)算一下我校第一季度平每月用电量。

  (3)预测4月份的用电量。

  (4)小组讨论,学生间交流。

  (5)指名汇报:你是根据什么来估计的?

  2.应用二。

  请用计算器帮这位小选手算算最后得分。

  生1:最后得分(84+70+88+94+82+86)÷6=84(分)。(大部分学生表示赞同)

  生2:我不同意,我认为应该去掉一个最高分、一个最低分。最后得分(84+88+82+86)÷4=85(分),这样才公平、合理。

  师:这种求平均数的方法,你有没有在哪里见过?(奥运会、电视比赛等)为了使比赛更公平,通常在比赛中采用这种方法求平均数。

  3.应用三。

  师:星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?

  □会 □不会 □可能会 □可能不会

  (1)把自己的想法与同桌交流。

  (2)指名说说(3个)

  (3)学生评价。

  师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,也可能正好是126厘米,我们在对待实际问题时就应该根据实际情况分别对待。

  四、课堂总结

  师:这节课你有哪些收获?还有问题吗?

  五、课外延伸

  推荐作业:1、现在你对教师上课开始的问题“我们班的平均身高是多少?”

  能解决吗?这一问题就留给大家课后去解决。

  “平均数”教学设计 篇4

  教学目标

  知识与技能:

  1、能对获得的数据进行整理,并用条形统计图表示出来。

  2、认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  过程与方法:

  1、经历收集、整理、描述和分析数据的过程。

  2、经历读统计图、交流信息、提问题、解决问题的过程。

  情感态度价值观:

  从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。

  教学重点

  认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的`数据提问题并解决问题。

  教学难点

  能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学方法

  尝试教学法

  课型

  新授课

  教学准备

  多媒体

  教学时数

  1

  板书设计

  教学过程:

  一、炫我两分钟

  二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。

  为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。

  从这个故事中你知道的统计有什么作用吗?

  【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】

  二、尝试小研究

  尝试小研究:

  研究一:

  1.从上面的统计图中,你得到了哪些信息?

  2.这个统计图一个格表示几个人?你是怎么知道的?

  3.自己提出问题并解答。

  研究二:

  1.完成课本91页,试一试:根据统计表,完成统计图。

  2.交流展示学生完成的统计图。

  三、小组合作探究

  尝试研究一

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流,确定好组员的发言顺序。

  2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。

  3、组内分工,为班级展示提升做准备。

  【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】

  四、班内展示交流,建构新知

  1、全班交流,师生评价。

  2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)

  3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)

  小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的方法。

  4、鼓励学生根据统计图提问并解答。交流时,学生提出的问题只要合理,就给予肯定。

  【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】

  “平均数”教学设计 篇5

  本课时学习目标:

  1.通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2. 能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  3. 进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  本课时重点难点:平均数的意义及求平均数的方法。

  学习过程

  自学准备与知识导学:

  1、预习课本92-93页的内容,不明白的地方标出来。

  2、通过预习,我认为男生与女生相比, 套得准,因为小组内交流预习情况

  学习交流与问题研讨:

  1、要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?

  2、出示学习菜单:

  (1)书中有几种方法求男生平均成绩的?谁能给大家介绍介绍?

  (2)仔细看统计图的变化过程,思考是如何分的?

  (3)怎样列算式计算?

  归纳总结:要求平均数,可以先求出( )数,再()。

  3、研究平均数的意义。

  (1)这个7分就是男生每人实际得分吗?你是怎么理解的?

  (2)请你仔细观察平均数与原来的这一组数,你发现了什么?

  4、算女生平均分。

  (1)先估计女生平均每人套中多少个?你是怎么想的?

  (2)大家估计得准不准呢?用什么方法验证一下?

  (3)说说你的验证方法。

  (4)为什么要除以5?

  小组讨论菜单中的问题

  点拨:这种方法叫:“移多补少”

  点拨:这种方法叫:“求和均分”

  小组交流,教师巡视,给予指导。

  练习检测与问题延伸:

  1、出示“想想做做”第一题

  (1)怎样移动笔筒里的铅笔?

  (2)你还有其他的方法吗?

  (3)如果从第一个笔筒里拿出3枝放入第二个笔筒,再从第二个笔筒里拿出5枝放入第三个笔筒,平均每个笔筒里有多少枝?

  (4)如果从第三个笔筒里拿出3枝放入第二个笔筒,再从第一个笔筒里拿出3枝放入第二个笔筒,平均每个笔筒里有多少枝?

  (5)关于笔筒的三个平均数,有变化吗?为什么?

  2、“想想做做”第二题

  说说你是怎样做的?

  3、小林参加了三场套圈比赛,下面是小林套中个数的统计:

  第一次

  第二次

  第三次

  平均成绩

  小 林

  12

  11

  10

  小林第三次套中的个数是多少呢?

  4、教材第97页的“你知道吗?”

  5、检测:想想做做第3、4题

  小组交流、汇报

  根据学生解决实际问题中出现的问题,进行进一步的明确指导。

  学生独立完成检测,教师巡视,给予差生适当的帮助。

  课后反思或经验总结:

  平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中结合实际问题(男女生套圈比赛)哪个队会获胜?要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?引导学生展开交流、思考。在学生的活动讨论中,认识到平均数能代表他们的整体情况,因此产生了“平均数”,感受平均数是实际生活的需要,也产生了学习“平均数”的需求。教学只有组织了这个过程,学生对平均数的统计意义以及作用才有比较深刻的.理解,也才能在面临相类似问题时,能自主地想到用平均数作为一组数据的代表,去进行比较和分析。

  另外, 我采用了小组合作,自主探究的方式让学生自己探索出求平均数的方法。一种是移多补少,一种是求和均分。然后引导学生感受到这两种方法的本质都是让原来不相同的数变的相同,从而引出平均数的概念。并在讲解方法的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。

  “平均数”教学设计 篇6

  教学内容:

  平均数

  教材分析:

  平均数是一个重要的刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。我们既可以用它来反映一组数据的一般情况,也可以用它来进行不同数据组的比较,从而看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均身高、平均成绩等等。平均数是在第一学段已经理解了平均分以及除法运算的意义基础上教学的。与实验教材相比,修订教材对平均数的处理,更加突出其统计意义。通过“两队人数不同不能用总数比较”这一思维的矛盾,促进学生进一步理解平均数的意义,进而发现运用平均数作比较的必要性。

  教学目标:

  1、体会平均数的作用,掌握计算平均数的方法。

  1、经历求平均数的过程,尝试用自己的语言解释其实际意义。

  2、感受数学与生活的密切联系,激发学生学习数学的`兴趣。

  教学重点难点

  重点:体会平均数的作用,掌握计算平均数的方法

  难点:初步理解平均数的实际意义。

  教具准备:

  桃心卡片课件

  教学过程

  一、创设情境,初步感知

  1、猴妈妈有三个孩子,这天猴妈妈在山上摘了很多新鲜的桃子,于是给大儿子6个,给了二儿子7个,给了小儿子2个,小儿子不高兴了。

  (边讲边贴桃形纸片,贴三行,为下面的移多补少做铺垫)

  师:小儿子没什么不高兴了?你们觉得这样分公平吗?

  学生讨论,指名汇报。

  2、你能帮猴妈妈重新分一分吗?怎样分的公平?指名学生演示。

  3、小结:这种方法叫“移多补少”(板书)

  谁还有其他的办法解决这个问题?

  (先把三个人的桃子合起来有15个,再平均分给这3个小猴子,这样每个小猴子都分到5个桃子。)

  这种方法也很好!我们也给它取个名字。“先合再分”

  (板书)。

  4、刚才我们用移多补少和先合后分的方法,都能使这三个小猴的桃子个数从不同变成相同,都是5个。这里的“5”就是“6、7、2”这三个数的平均数。像这样,几个大小不等的数,通过移多补少或者先合再分的方法,使它们变成一个相同的数,这个相同的数就是这几个数的平均数。(课件出示)

  板书课题平均数

  二、自主探索,解决问题。

  1、出示大家在操场踢毽子的情景(PPT)

  出示男女各3人一组

  姓名

  个数

  小军

  15

  小强

  15

  小明

  15

  姓名

  个数

  小雨

  18

  小涵

  17

  小敏

  16

  女看哪组成绩好?怎么比?

  可以比总数,可以比平均数,指名学生汇报,并说明计算方法。

  2、人数不同

  男生组有一个同学不服气,真正的高手没上,小飞同学每分钟踢了19个

  男生队女生队

  姓名

  个数

  小雨

  18

  小涵

  17

  小敏

  16

  姓名

  个数

  小军

  15

  小强

  15

  小明

  15

  小飞

  19(一)现在比总数的话公平吗?

  (二)怎么比?比平均数比较公平。

  (三)先不计算,观察这组数据的特点,猜测一下,小飞的加入,男生队的成绩会发生什么变化?平均数会超过15个吗?会超过19个吗?平均数会在什么范围?

  (四)请计算出新的男生队的平均成绩。

  1、学生汇报并板书算式

  (19+15+15+15)÷4=16(个)

  2、对比观察,小飞的加入平均数有什么样的变化?平均数变大了。

  3、为了公平起见,女生队也加入了一个队员,想一想,如果要保持领先,至少要踢多少个?

  姓名

  个数

  小军

  15

  小强

  15

  小明

  15

  小飞

  19

  姓名

  个数

  小雨

  18

  小涵

  17

  小敏

  16

  小云

  9你能计算出现在女生队的平均成绩吗?

  随着小云同学的加入,平均数有什么变化?

  师小结:平均数会受到较大数据或较小数据的影响。

  4、质疑:平均数是16个男生队是每个人都踢了16个吗?女生队是每个人都提了17个吗?

  5、小结:16这个平均数表示男生队的一般水平,17这个平均数表示女生队的一般水平。

  6、结合平均成绩、平均身高、平均工资等素材理解平均数的意义。

  如通过平均身高可以了解身体生长状况,平均成绩可以找到差距。

  7、生活中的平均数,你还知道哪些?

  8、小结:平均数可以表示一组数据的一般水平,也可以用来个数不同数据的比较。

  三、巩固练习。

  接下来老师看看你们能不能运用所学平均数的知识解决实际问题。

  1、纸条,师估计平均长度是30厘米,你们同意吗?

  2、我从体育老师哪里了解到咱们班孩子的平均身高是136厘米,有没有可能有孩子的身高是145厘米?125厘米?是不是咱们班每一个孩子的身高都是136厘米?为了让大家理解更透彻,老师带来了一张珍贵的照片。

  3、讲一个平均数的小故事,一个老爷爷,70岁了,在看到报纸上说中国男性的平均寿命是71岁时,伤心地哭了,你们知道老爷爷为什么哭了吗?请你用学到的平均数的知识安慰安慰老爷爷。

  4、平均水深是110厘米,小华身高140厘米学游泳,有危险吗?

  四、全课总结,说说你都学到了什么,你有什么收获?

  板书设计:

  平均数

  移多补少先合后分

  (15+15+19+15)÷4

  =64÷4

  =16(个)

  一般水平

  “平均数”教学设计 篇7

  教学内容:

  教材第90、第91页的内容及第92页做一做

  教学目标:

  1、理解平均数的含义,初步学会简单的求平均数的方法

  2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用

  3、感受平均数在生活中的应用,增强探索数学规律的兴趣。

  教学重点:

  理解平均数的含义,掌握求平均数的方法,“移多补少” “先合并再平分”的实际意义和应用。

  教学难点:

  初步学会简单的数据分析,进一步体会统计在现实生活中的作用。

  教具学具:

  多媒体课件教学过程:

  一、情境导入

  1、谈话引入

  师:同学们,喜欢吃桃子吗?老师这有16个桃子,我把它们分给2个同学看,怎样分才能让他们一样多。

  2、引入“平均数”师:每人都是8个桃子,8就是一个平均数。这样分两个同学就一样多了。(出示课题:平均数)

  同学们在日常生活中还听到或者用到平均数?(平均身高,平均成绩,平均速度,平均产量等等。

  二、自主探究,解决问题

  1、初步理解平均数的意义和求平均数的方法。

  (课件出示教材第90页例1情境图)

  师:同学们请看这张图片,这是环保小分队的同学们收集饮料瓶的统计情况,在这张统计图你获得了哪些数学信息?我们要解决的问题是什么?

  师:你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?学生汇报交流

  师:这个小组平均每人收集了多少个饮料瓶?(13个)

  师:大家都同意这个算法吗?13是怎么来的?

  “移多补少”的方法。

  指名学生说自己用的方法,结合学生的口述和学生动手操作,用课件演示“移多补少”的过程。

  师:这种方法对吗?为什么要把小红的一个给小兰,把小明的两个给小亮?(为了使他们每个人的瓶子数量同样多)能给这种方法起个名字吗?(指名学生试着回答总结)

  师:像这样把多的饮料瓶移出来补给少的,使得每个人的饮料瓶的数量同样多,这种方法叫“移多补少”,(板书移多补法)这里平均每人收集了13个,这个“ 13”是他们真实收集到的饮料瓶吗?(不是)而是4个人的总体水平。

  师:还有不一样的方法吗?学生口述算理并说算式,老师板书。

  师:像这样先合并然后再平均分的方法同叫“先合后分法。”无论是通过移多补少还是先合后分,其目的只有一个,就是使原来几个不同的数变得同样多,这样得到的数就是这组数据的平均数。13就是这4个数的平均数,这也是我们今天要学习的内容。

  (板书课题:平均数)它引导学生利用“移多补少”或“平均分的意义”理解,平均数并不是每个学生收集到瓶子的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到数,可能同学们收集到的比这个数量小,也可能比这个数量大。平均数是为了代表这组数据的总体水平而创造出来的一个“虚拟”的数。

  2、内化拓展、进一步理解平均数的意义和计算方法。

  师:现在让我们一起来看看体育小组的活动(课件出示照片和91页例2情景图——————踢毽比赛)对于比赛,你们最想知道什么?(哪个队赢)那就是想知道哪个队的成绩好?现在老师让你们当裁判,一定要公平公正地裁决。

  (1)出示表一:(男女生各一名同学)师:如果你是裁判,你认为哪个队赢?你是怎么知道的?(19>17)

  (2)出示表二:(男女生各加入三名同学)师:现在哪个队赢了?你怎么知道?(指名学生说是通过计算总成绩知道的)现在男生算你们队的成绩,女生算你们队的成绩。

  通过计算得出:68<76(女生队获胜)引导学生体会,在人数相同的情况下,可以用求总数的方法比较输赢。也可以求平均数的方法。

  男生:68÷4=17(个)

  女生:76÷4=19(个)17<19(3)出示表三:(男生加入一名同学)

  师:看来女生队暂时领先,男生队还有一名队员要加入进来,请各位裁判独立思考后给出最终的裁定?并说出你是怎么想的?

  预设:比总数男生对获胜,比平均数合理。

  师:怎样列式解答呢?(学生口述,老师板书):男生队平均每人踢毽个数,女生队平均每人踢毽个数:(19+15+16+18+17)÷5,(18+20+19+19)÷4 =85÷5 =76÷4 =17(个)=19(个)17<19。答:女生队的成绩好些。

  三、探究结果,回顾小结

  1、体会平均数的意义。

  师:回忆一下,我们学了什么?(预设:平均数)用自己的.话说一说,平均数是一个什么样的数?(引导学生用自己的话说出求平均数的意义和作用。)

  ①当个数不同,用总数量比较结果时有失公平,可以用两组数据的平均数来比较。

  ②平均数能较好的反应出一组数据的总体情况③平均数是一个虚拟的数。

  2、回顾求平均数的方法。

  ①把多的瓶子移出来,补给少的,使得每个人的瓶子数量同样多,这种方法叫移多补少。

  ②用先合后分计算的方法求平均数时,平均数=总数量÷总份数

  四、联系实际,拓展应用

  1、做一做(课件出示)学生独立思考解决,并指名学生板演并说方法。

  2、判一判(课件出示)指名学生读题,独立思考后判断并说理由。

  3、说一说(课件出示)学生小组交流并汇报。

  五、实践作业、课后延伸

  参照十岁儿童身高正常,测量本班同学的身高,判断一下同学们的身高是否正常。

  男生:140cm

  女生:141cm)

  板书设计:

  平均数较好地反映一组数据的总体情况

  方法:移少补多(有局限)找基数,分多余数

  公式:总数÷份数=平均数

  特点:最大值﹥平均数﹥最小值;平均数≠实际数。

  “平均数”教学设计 篇8

  一、教学目标

  1、知识与技能:

  ①掌握算术平均数,加权平均数的概念。

  ②会求一组数据的算术平均数和加权平均数。

  2、解决问题:通过解决实际问题,让学生初步体会数学与生活的密切联系。

  3、情感与态度目标:通过小组合作的活动,培养学生的合作意识和能力。

  4、数学思考:能通过收集到的数据进行加工处理,进而作出评判。

  二、教材分析

  “平均数”是(北师大版)八年级上册第八章《数据的代表》的第一节内容,教学安排两个课时,本教学设计为第一课时。

  设计意图:

  ①让学生在小学已学过的算术平均数的基础上复习巩固,总结出算术平均数的概念,并从求算术平均数的简便算法中渗透加权平均数的意识。

  ②通过例题讲解引出加权平均数的概念,使学生体会到由于工作不同,对各方面的要求就不同,哪一方比较重要,权就比较大。

  ③通过帮助学生解决有关问题,总结出对概念的理解,得出两种求平均数的方法。

  三、教学设计

  (一)导入新课

  1、一个寻宝者寻宝的途中被一条河拦住了去路,没有桥也没有小船可以过河,他又不会游泳。一位过路人告诉他这条河的平均深度1.5米。寻宝者的身高是1.75米。你认为寻宝人可以安全度过这条河吗?为什么?

  2、在每次考试结束后,我们都想知道班级成绩和个人成绩在年级中的排名如何,那么必须收集哪些数据才能得出结论呢?

  (二)讲授新课

  1、打篮球是大家喜欢的一种运动项目,请问同学们影响比赛成绩的因素有哪些?(心理因素、配合程度、技术成份、身高和年龄等。)

  2、小组分工:第一组计算“八一双鹿队”的平均身高;第二组计算“东方大鲨鱼队”的平均身高;第三组计算“八一双鹿队”的平均年龄;第四组计算“东方大鲨鱼队”的平均年龄。

  3、小组里选出代表公布算法与结果。

  (八一双鹿队的平均身高为1.99米,平均年龄为25.3岁;东方大鲨鱼队的平均身高为1.98米,平均年龄为23.3岁。所以这两支篮球队中,八一双鹿队队员的身材更为高大,上海东方大鲨鱼队队员更为年轻。)在此,出现了两种算法:一是逐个相加法,二是加、乘法结合的`简便算法。在小组计算后,教师请同学们对上述的两种算法发表看法。师生归纳得出求平均数的简便算法。

  4、总结出算术平均数的定义:

  5、例1(课本218页)讲解:出示题目让学生讨论后解答。师问:计算(1)与(2)的结果不一样,说明了什么?同学交流之后发表看法。教师总结。

  6、总结出加权平均数的概念。

  (三)课堂练习

  1、随堂练习(见课本);

  2、补充练习:

  (1)上学期期末考试后,某同学数学科的期考成绩为86分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分。

  ①请问他一学期的数学平均成绩是多少?

  ②如果期末总评成绩按:平时成绩占30%,期中成绩占30%,期末成绩占40%计算,那么该同学期末总评数学成绩是多少?

  (2)据有关资料统计,1978~1996年的18年间,我国有13。5万学生留学美国,请计算这18年间平均每年留学美国的人数。

  (四)课堂小结平均数具有怎样的意义?如何计算平均数?说说算术平均数与加权平均数的联系和区别?

  四、教学反思

  这节课,大部分学生表现积极,热情高、兴趣高,分组计算平均身高和年龄学生们有兴趣,很快就能算出来,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,在这种前提下,简便算法的推出就水到渠成了。

  “平均数”教学设计 篇9

  教学要求:

  1、通过练习,进一步巩固求平均数的方法。

  2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  教学重点:

  解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  教具学具准备:

  课件、统计。

  教学过程:

  一、理解平均数意义

  “1”:说一说题目说的是一件什么事情?

  平均水深140厘米是什么意思?是不是处处水深140厘米?

  (不是,是有的地方比140厘米深,有的地方比140厘米浅)

  “2”:自己看题,同桌讨论。

  全班交流:

  你认为哪些平均数是合理的,哪些是不合理的,为什么?

  (1、3合理,2不合理)

  二、求平均数的练习:

  1、“3、4、6、7”题。

  “3”:从表格里你了解到哪些信息?

  独立解答(1)、(2),全班交流。

  看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?

  “4”:

  (1)先算一算三年级平均每组植树的棵数。

  假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?

  假如是6棵呢?为什么?

  看着这张统计图,你能不能给出平均数的范围?

  (2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?

  “6”:(1)同桌讨论,可以怎么估计?

  介绍自己是怎么估计的。

  (选取6个数据中处于较中间位置的一个,再看看其他的`移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)

  (2)你还能说出这个小组同学身高的哪些情况?

  “7”:独立练习。

  “你还发现什么?”尽量让学生从多角度说一说。

  2、“5、8”题。

  “8”:先说一说这一题的解决过程。

  学生以小组为单位,调查、记录、解答问题。

  “5”:课堂上老师指导说清要求,课后学生完成。

  三、“你知道吗?”

  举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?

  学生计算:(47+78+80+81+82+82)÷6=75

  去掉以后,是多少呢?

  学生计算(78+80+81+82)÷4 约为80分

  看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。

  教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。

  “平均数”教学设计 篇10

  以往对于平均数的概念引入,比较典型的是组织两组人数不等的比赛,在学生初步体会到比总数不公平的前提下,顺利过渡到比平均数的环节上来。而张齐华老师的`“平均数”一课,从比投篮技术的情境引入:首先出场的是小强,他1分钟投中5个球,可是他对这一成绩似乎并不满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,会同意他的要求吗?这样使学时体会到由于随机误差的存在而使得一次投球的成绩很难代表小强的真实水平,应该再给他两次机会。小强又投了两次,很巧的是后两次投篮成绩都是5个,显然是张老师精心设计的,使学生意识到用5来表示小强1分钟投中的个数最合适,避免了学生不会计算平均数的尴尬。接着小林出场,小林第一次只投中了3个球,“如果你是小林,会就这样结束吗?”从而自然引出第二组数据:3个、5个、4个。可是也引出了麻烦:三次成绩各不相同。这一回,又该怎么办?在学生思维的碰撞中,发现也用5来表示小林的成绩显然对小强来说是不公平的,学生凭直觉认为4最能代表小林1分钟的成绩,这样平均数的意义悄悄地被学生自己发现了。

  张老师精巧的设计,再加上他灵活、智慧地处理生成,是课堂充满生机与活力,使我受益颇多。

  “平均数”教学设计 篇11

  一、教学目标:

  1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、过程与方法:使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。用数据分析、比较、等多种方式来解决问题,提高学生解决问题的能力,拓宽学生解决问题的途径。

  3、情感与态度:在愉悦轻松的课堂里,掌握富有挑战的知识,丰富生活经验的积累。在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

  二、重点难点

  教学重点:通过直观的方式使学生理解什么是平均数,再利用平均分的意义,使学生理解。同时感受平均数在统计学上的意义和作用。

  教学难点:总结出求平均数的一般方法,实现从直观到抽象的过渡。

  教学准备:幻灯片、磁铁、统计图等

  三、教学过程

  (1)、创设情境、提取数据

  话题:同学们投篮过吗?老师也会投篮,一分钟我一般可以投4个。可是在一分钟投篮测试中我第一次投居然只投了一个。只测这一次能测出我的'我的一般水平吗?那怎么办?

  就像同学们所说,多测试几次就能把一般水平体现出来。

  (2)、解决问题,探求新知。

  你们瞧,快乐篮球队也正在进行一分钟投篮的测试。为了能较好地测出队员的一般水平,体育老师让他们每人测三次。

  师:第一个出场的是小林。你们说用几个来记录小林一分钟投篮的一般水平呢?

  接下来轮到小华出场了。看他第一次投了5个。是不是也可以用5个表示他的一般水平了?

  生:5+6+7=18(个)18÷3=6(个)

  师:像这样把三次投的个数合起来再平均分给这三次,使三次投篮每次投中的个数看起来同样多,这个同样多的数就叫做平均数。(板书:平均数)

  刚好第二次投中的个数和平均数一样多

  师:能代表小刚第一次、第三次投中的个数吗?

  生:是小刚1分钟投篮的一般水平(师板书:一般水平)

  师:也就是说,6是这三次投篮的平均数,在这里我们就可以说6是5、6、7的平均数。

  师:小强测三次,求得的平均数能较好地反映他的一般水平,如果想更好地测出他的一般水平可以再多测4次5次甚至更多次,次数越多平均数就越能表示他们投篮的一般水平。

  紧接着小强投篮的情况也出来了

  师:该用几个表示小强投篮的一般水平?

  师:除了列式计算(移多补少),你还有别的方法吗?

  动手移移看拿出小圆片,像老师这样用圆片表示投篮的个数,想一想怎么移能让三次看起来一样多,再移一移?

  师:我们还可以说,通过移多补少使每次个数看起来同样多的数,叫做平均数。

  【设计意图:知道平均数的含义,掌握求平均数的方法】

  (3)、自主探索,合作交流。

  师:其实除了我们刚刚求得的平均数,生活中也有许多平均数就藏在我们身边。

  图1,老师通过抽样调查统计出我校三年级同学平均身高是……。

  平均身高124厘米表示什么?

  图二,丽江春节期间平均每天3万游客。表示什么?

  图3,冬冬身高140厘米,到一个平均水深110厘米池塘游泳会不会有危险?

  师:除了这几个生活中的平均数以外,你还能举出其他生活中的平均数吗?

  【设计意图:了解求平均数的意义】

  (四)、归纳总结,知识拓展。

  学了这节课,你有什么收获?

  “平均数”教学设计 篇12

  一、教学内容

  人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2

  二、教学准备

  多媒体课件,姓名笔划数统计表每人一张。

  三、教学目标与策略选择

  平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:

  (一)教学目标:

  1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。

  2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。

  3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。

  (二)教学重点:理解平均数的意义和求平均数的方法。

  (三)教学难点:理解平均数的意义。

  四、教学流程设计及意图

  教学流程

  设计意图

  (一)创设情境,激发兴趣

  师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)

  师:谁又能知道老师的姓名呢?

  学生说一说后,出示自己的姓名。

  师:能完成这表格吗?(学生数一数,完成表格)

  师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)

  师巡视指导,搜集、选择教学信息。学生完成后作简单交流。

  (二)解决问题,探索新知

  1、在解决问题中感知概念

  师:请观察老师姓名的笔画数,你能提出什么数学问题?

  预设生(1)每个字笔画数的多少?

  (2)比多少?

  (3)发现数字间的规律。

  (4)求总数?(师追问:你是怎样算出来的?)

  师:知道了笔画数的总数,你现在又能解决什么问题?

  预设生:可以求出平均每个字的笔画数。

  师:平均每个字的笔画数,你是怎么得来的?

  预设生(1)通过计算(10+11+16)÷3=12?1

  (2)通过移多补少得到。

  2、在对话交流中明晰概念

  师:袁老师的姓名平均笔画数12画,这又表示什么?

  预设生(1)表示袁铭璟三个字笔画数的平均水平。

  (2)表示老师姓名笔画数的一般水平。

  师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?

  (学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)

  预设生(1)有关系的,是他们的中间数。

  (2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。

  (3)平均笔画数在笔画最多的数字与笔画最少的数字之间。

  (4)平均笔画数就在这三个字笔画数的中间位置。

  师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把12叫做袁老师姓名笔画数的--平均数。(板书课题)

  师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)师生交流计算的方法与结果。

  3、在比较应用中深化概念

  出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)

  师:比较他们姓名中每个字的笔画数,你有什么方法?

  预设生(1)比笔画数的总数。

  (2)比平均笔画数。

  (让学生先在小组内讨论,然后组织全班汇报交流。)

  预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的`姓名笔画数少。

  (2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。

  学生运用平均数进行比较,然后组织交流。

  师:比完后你有什么感想?(生回答略)

  师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?预设生:既可以用平均数来比,也可以用总数来比。

  师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。

  出示(1)文成县实验小学四年级平均每班有学生56人。

  (2)四(3)班上学期期末考试数学平均分是81分。

  师:你猜这些数据是怎么得来的,是什么意思,有什么用处?

  (学生小组讨论,然后全班汇报交流。)

  预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。

  (2)略

  (三)尝试解题,自主归纳

  师出示例题:

  有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?

  师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。

  预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。

  学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5师:你们知道这位同学是怎么想的吗?

  预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。

  学生计算,注重计算方法的选择。然后交流。

  师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。

  (学生小组合作,交流看法,教师参与讨论。)

  学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。

  《平均数》教学反思

  《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。

  突出主体地位,创造了自然和谐的环境

  在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。

  本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。

  尊重个体差异,设计了满足不同需求的练习

  家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。

  本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。

  思维深度延伸,激活了学生内在的发展潜能

  在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:

  1.什么样的情况下,可以(142+140)÷2? 2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?

  2.这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。

  “平均数”教学设计 篇13

  教学内容:《数学》三年级下册第58、59页

  教学目标:

  1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

  2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

  3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

  教学准备:CAI课件。

  教学过程:

  教学环节

  设计意图

  教学预设

  一、情境创设:

  同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

  去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

  二、探究与体验;

  1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

  95分

  95分

  96分

  85分

  98分

  93分

  你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

  2.全班交流:

  刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

  指名回答。

  生评价谁算得对。

  4.师小结过渡:

  是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

  5.议一议:

  师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

  第一次

  第二次

  第三次

  第四次

  第五次

  167厘米

  167厘米

  167厘米

  167厘米

  167厘米

  那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

  全班交流。

  6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的'最后成绩,而不是用他几次试跳的平均成绩。

  7.通过以上的学习你了解到了哪些知识?

  三、实践与应用;

  师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

  1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

  第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

  2.出示第2小题,生独立完成,然后集体订正.

  3.出示第三小题,生独立完成第一步,然后集体订正。

  第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

  四、拓展与延伸:

  出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

  请同学认真思考,然后和同桌说说你的想法。

  从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

  让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

  培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

  让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,

  对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

  在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。

  对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

  让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

  在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

  为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。

  学生可能有以下几种答案

  1.(96+95+95+96+85

  +98+93)÷7=94(分)

  想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

  (2)(96+95+95+96+93)÷5=95(分)

  想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

  还有可能出现计算错误的现象,让学生找出错误原因。

  学生可能出现的回答有;

  1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

  2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

  第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

  答案应该是下周应准备和本周售出总数同样多的饮料最合适。

  什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

  “平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

  “平均数”教学设计 篇14

  教学目标:

  1.使学生掌握平均数的意义和求平均数的方法。

  2.使学生能根据数据列出算式求平均数。

  3.在教学活动中提高学生的发散思维能力。

  教学重、难点:

  1.重点:掌握平均数的意义和求平均数的方法。

  2.难点:能根据数据列出算式求平均数。

  教具、学具准备:练习本、自制统计图、米尺

  教学过程:

  一.谈话导入

  老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)

  引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?

  8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)

  在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)

  今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。

  揭示课题:平均数

  二.探求新知

  1.导入新课

  同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。

  (1)出示统计图。

  (2)观察:从统计图中,你能了解到哪些信息?

  (3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。

  组织学生交流、讨论,然后指名回答。

  一种:“移多补少”,在统计图上引导学生把多的.移到少的地方去。

  二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)

  教师根据学生的回答,并板书:

  (14+12+11+13)÷4

  =52÷4

  =13(个)

  “13”在这里也叫什么数?

  (4)巩固提问:这里为什么要除以4?

  (5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。

  三.巩固提高

  1.活动“数小棒,求平均数”

  早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。

  (1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。

  (2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。

  (3)根据学生的完成情况,教师小结。

  2.活动:求平均身高

  在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。

  四.全堂小结

  今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?

【“平均数”教学设计】相关文章:

《平均数》教学设计06-10

平均数教学设计03-09

《平均数》教学设计04-18

《平均数》教学设计03-08

人教版平均数的教学设计08-03

【精华】平均数教学设计10-18

人教版平均数的教学设计07-31

平均数教学设计(15篇)06-21

《平均数》教学设计(15篇)06-10