混合运算的教学设计

时间:2024-09-02 06:00:19 教学设计 我要投稿

混合运算的教学设计

  作为一名人民教师,时常需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。如何把教学设计做到重点突出呢?下面是小编收集整理的混合运算的教学设计,欢迎大家分享。

混合运算的教学设计

混合运算的教学设计1

  一、教学内容

  课本P57——58页

  二、教学目标:

  1.在回顾中复习混合运算的计算顺序。

  2.用列综合算式的方法解决问题。

  三、教学重点:对混合运算进行系统整理和复习。

  四、教学难点:对所学知识进行整理和复习。教学过程:

  五、教学基本流程:

  创设情境,展示目标———自主学习,合作交流——检查自学情况——教师精讲点拨——课堂巩固训练——课堂小结拓展、提升

  六、教学过程

  一、复习混合运算的顺序

  (一)整理混合运算的顺序;说出各题的运算顺序,再计算

  4×6÷8=

  72-5×8=;

  30÷6+29=

  7×(36-30)=

  48-18+32=

  (14+21)÷7=

  问题:读题目要求,想一想先算什么,再算什么?

  问题:1.你能把这6个算式分分类吗?并说说为什么?

  2.每一类按什么顺序进行计算呢?

  (1)在有加减乘除混合运算中,按先乘除后加减的.顺;

  (2)只含有加减或乘。

  (一)整理混合运算的顺序

  说出各题的运算顺序,再计算。

  4×6÷8=72-5×8=

  30÷6+29=7×(36-30)=

  48-18+32=(14+21)÷7=

  问题:读题目要求,想一想先算什么,再算什么。

  问题:1.你能把这6个算式分分类吗?并说说为什么这么分类。

  2.每一类按什么顺序进行计算呢?

  (1)在有加减乘除混合运算中,按先乘除后加减的顺序计算。

  (2)只含有加减(或乘除),要从左至右按顺序计算。

  (3)有小括号的,先算小括号里面的。

  (二)对比练习,巩固混合运算的顺序

  比较上下两题的运算顺序和计算结果。

  18+27÷94×8-3

  (18+27)÷94×(8-3)

  问题:每组中上、下两题有什么相同点和不同点?

  小结:在做混合运算时,一定要想一想先算什么,再算什么。

  二、复习列综合算式解决问题

  问题:

  1.你知道了什么?

  2.你会解答吗?选择一个你喜欢的问题把你的想法写出来。

  5.解答正确吗?

  4.能说说你们的想法吗?

  3.能列个综合算式表示你的思路吗?

  小男孩:

  3×4+5

  =12+5

  =17(元)

  小女孩:

  10-(3+5)

  =10-8

  =2(元)

  10-3-5

  =7-5

  =2(元)

  (26+19)÷5

  =45÷5

  =9(个)

  问题:

  1.你知道了什么?

  2.能列个综合算式表示你的思路吗?

  3.说一说你是怎么想的。

  4.为什么要加小括号呢?

  5.解答正确吗?

  8×3-10

  =24-10

  =14(瓶)

  问题:

  1.你知道了什么?

  2.要求“还剩多少瓶”,你们会解决吗?能列综合算式表示你的思路吗?

  3.说一说你的想法。

  4.这道题需要加小括号吗?

  5.解答正确吗?

  三、课堂作业

  作业:第58页练习十三,第1~3题。

  四、课堂小结拓展、提升

  学了这节课你有什么想法和收获?

混合运算的教学设计2

  教学内容:教科书第59页例1、例2及“做一做”,练习十五第1~5题.

  教学目标:

  1.通过学习,掌握分数四则混合计算的运算顺序,会正确进行计算.

  2.培养学生知识的迁移类推及计算能力.

  3.通过数学活动,激发学生学习数学的兴趣及运用数学知识的能力.

  教具准备:多媒体课件一套.

  教学过程:

  一、设疑导入

  出示一组算式.(课件出示.)

  观察以上6个算式,讨论.

  1.这些算式有什么共同之处?(都是四则混合运算式题.)

  2.根据算式的特点,可以分为哪几类?

  二、新课(小组合作,研讨新课.)

  第2个问题可以先让学生小组讨论,然后派代表汇报.

  学生的分类大致有以下几种:

  1.依据计算步骤分为:

  两步计算的有:

  三步计算的有:

  2.按算式中数的特征可以分为:

  属整数四则混合运算的有:

  属分数四则混合运算的有:

  ……

  3.教师重点依据学生的第2种分类,先让学生说说分数四则混合运算的顺序.再具体说出下面各题应先算什么,再算什么.

  教师根据学生的回答,在算式的'下方标上运算步骤.(可用课件演示.)

  4.出示下面一组算式.

  (1)让学生仿照整数四则混合运算的顺序,分小组试着说出上面4道分数四则混合运算的顺序,分组进行汇报.

  (2)学生汇报运算顺序时,仿照上面题的方法用红线标出运算步骤.

  (3)让学生分小组试做,每人试做两题(一题有括号,一题无括号的).可协助完成.

  (4)请其中一个小组派一名代表汇报每题的运算过程及结果,其他组进行核对.

  5.让学生把整数四则混合运算式题与分数四则混合运算式题进行对比,找出它们的共同点,进而总结出分数四则混合运算的运算顺序.

  三、反馈练习

  1.先说出下面各题的运算顺序,再计算.

  +3÷ 2-×

  23-×× ×+÷

  2.请你用、1、、、、等数编几道分数四则混合运算式题.

  (1)小组协助完成.

  (2)每个小组成员选2题,先说运算顺序,再计算.

  (3)各小组汇报编题及计算情况,对编得合理,计算准确的小组给予奖励.

  四、巩固练习

  1.完成练习十五第4题.

  先独立做,再集体订正.

  2.课堂作业:练习十五第5题.

  板书设计

  例1:+÷ 20-×

  =+=20-

  =1=20-

  =19

  先算二级运算,再算一级运算

  例2:÷[(+)×][4-(-)]×

  =÷[(+×]=[4-(-)]×

  =÷[]=[4-]×

  = =3×

  =3=

  =

  有括号的,先算小括号里面的,再算中括号里面的.

  教学设计说明

  分数四则混合运算是在整数四则混合运算之后教学的.依据两者之间的联系,利用知识的迁移类推,让学生自主探索掌握新知识.

  本课的教学分三个层次:第一层是通过给一组算式进行分类,设置疑问,导入新课.第二层,重点依据学生的第二种分类方法,即把算式依据数的特征分为整数四则混合运算和分数四则混合运算.在教师的引导下,利用新旧知识之间的联系及知识的迁移类推的方法得出分数四则混合运算的运算顺序.即一个算式中有两级运算,先算二级运算,再算一级运算.如果算式中有括号的,应先算小括号里面的,再算中括号里面的.第三层在学生掌握了分数四则混合运算之后,让学生根据教师给出的分数任意编出二、三步的分数四则混合运算式题.这样,通过数学实践活动,激发学生学习数学的兴趣,让他们主动参与到学习过程中.通过小组协作,共同学习新知识.第四步:让学生通过进一步练习,巩固所学的知识.

  此教学以学生发展为本,以引导学生通过分类发现问题、分析问题,进而解决分数四则混合运算的运算方法.从而深刻地理解旧知与新知之间的联系.

混合运算的教学设计3

  教学目标:

  1、使学生充分理解分数混合运算的运算顺序,明确分数混合运算与整数混合运算的关系,并能正确、熟练地进行计算。

  2、能运用所学的有关分数混合运算的知识解决生活中的实际问题,感受解决问题方法的多样性与灵活性,提高计算能力和解决问题的`能力。

  教学重点:

  能用所学知识解决生活中的实际问题。教学难点:能运用多种方法解决生活中的实际问题。教具准备:多媒体,小黑板。

  教学过程:

  (一)情境引入,回顾再现。

  陈爷爷每天绕操场跑6圈,2分钟可以跑半圈。照这个速度,陈爷爷每天跑步要用多少时间?

  学生解答:6÷(1/2÷2)=6÷1/4=24(分)

  师:这就是我们学过的有关分数混合运算的知识,这节课,我们就来进行相应的练习。

  (二)分层练习,强化提高。

  1、练习九的第1题,。提示:对于三步计算的题来说,如果选择比较合理的算法,也只要两步就能完成计算。

  2、计算下面各题

  2/9x0.375÷6/7

  4÷ 8/3 – 0.6

  引导学生注意:遇到小数计算,要先化成分数再进行计算。

  3、解下列方程

  5X=15/19

  2/3X÷1/4=12

  4、这篇文章太长了,3小时才录入了1/3。照这样的速度,李叔叔工作8小时,可以录入这篇文章的几分之几?还剩几分之几没有完成?

  (对于本题来说,如果学生列成8÷3×1/3也是对的。)

  5、练习九的第10题。

  要求学生按照指定的程序计算,再通过比较,有所发现并作出解释。如果计算正确,就能发现得数等于原来的数。其原因是2/

  3、3/4的倒数与1/2的积正好是1。

  (三)自主检测,评价完善

  出示检测题卡,让学生独立完成后,集体交流纠正。

  (四)归纳小结,课外延伸

  1、通过这节课的练习,你掌握了哪些知识?

  2、把你的感受写一写,写成一篇周记的形式。

混合运算的教学设计4

  教学内容:

  第一课时 混和运算

  例1、练一练

  教学目标:

  1.知识与技能:结合实际生活中的具体情景,使学生初步掌握在两级混合运算中“先算乘除法后算加减法”、“先做小括号里面的”运算顺序,并能正确地进行计算。

  2.过程和方法:结合生活情景,使学生初步学会解答数量关系比较简单的用两步解答的实际应用题,能正确分析数量关系,并会分步列式解答。

  3.情感、态度和价值观:培养学生认真观察、独立思考、细心计算的良好学习习惯,初步培养学生在实际生活中发现问题、提出问题、解决问题的'能力和用数学的意识。

  教学重点:

  先算乘除法后算加减法的运算顺序

  教学难点:

  运算顺序

  教学用具:

  课件

  教学过程:

  一、复习

  3×8+44×3+24×9+6

  说说你是怎样算的?(从左到右计算)

  二、新授:

  1.出示过渡:在商场柜台里有许多商品。我们快看看货架商都有哪些食品和饮料它们的售价各是多少元?

  出示课件:饼干7元/包,面包4元/个,蛋糕6元/个;牛奶2元/盒,可乐2元/筒。

  (1)学生读出各种商品的价钱

  (2)问题:你想购买什么食品?你能提出什么数学问题?

  (3)生小组讨论,全班交流。

  2.观察图中小朋友说的话,让我们一起来帮助她解决这个问题好吗?

  (1)学生审题,独立思考,用自己喜欢的方法解决。

  (2)生小组讨论,全班交流。说一说你是怎样想的?

  ①2×3=6(元)6+7=13(元)——分步式

  ②2×3+7=13(元)

  ③7+2×3=13(元) ———综合式

  (3)观察这三个算式的运算顺序....(先算什么,再算什么),有什么共同之处?为什么? (分步式和综合式都是先算乘,再算加。)

  (4)观察两个综合算式的运算顺序.... ,先算什么,再算什么? (在一个综合式中,不管乘在前还是在后,都是现算乘,再算加。)

  三、试一试。

  1.说说先算什么,后算什么?再独立完成。

  38-6×35×9-40

  2.观察两部试题,想一想先算什么,后算什么?再独立完成。

  54÷9-420+48÷6

  3.小结:

  计算中,加减法是同一级运算,乘除法是同一级运算,同级综合算式中我们都是按照从左到右的顺序计算,也就是说当算式里有加减法时,我们按照从左到右的顺序计算,当算式里有乘除法时,我们也按照从左到右的顺序计算。观察上面四个加减乘除混合的综合试题,你发现在计算既有加或减,又有乘或除时该按照什么顺序计算吗? (在算式里,有加法或减法,又有乘法或除法,不管谁在算式的前面,都要现算乘法或除法,再算加法或减法。)

  4.同桌互说发现的规律。

  四、练一练

  说说先算什么,再计算(先算的一级画思维线)。

  6×4+872÷8-418-45÷535-3×720+63÷98×3-5

  五、小结

  今天这节课你有什么收获? 今天我们学到的这个有关混合运算的计算顺序规律可总结成“先乘除,后加减” 作业:做练习册相关内容

混合运算的教学设计5

  教材简析

  本节课教学内容是北师大版小学数学六年级第二单元第一课时的内容。这是在五年级上册学了分数加减混合运算和分数乘法、数除法的内容后的一节新内容。是后面学习分数乘法的运算律以及解答有关分数混合运算问题作奠基作用。教材在安排分数混合运算时,先通过创设情境,发现数字信息,根据这些数字信息来解决生活中的实际问题,然后在解决实际问题中,引出分数混合运算,从而使学生体会到进行预算的必要性。使学生感受到数学源于生活,生活中处处有数学,两步计算的分数应用题是学生第一次接触,所以理解应用有题,分析题里的数量关系,解答应用题的方法是这节课的重点也是难点。在学生列出算式时先分步计算借助的是学生对分数乘法意义的理解,再列综合算式,在学生交流的基础上体会到分数混合运算顺序与整数混合运算顺序是一样。这样不仅可以改变以往从计算中讲授分数混合预算的运算顺序,还有利于学生掌握接受分数混合运算的顺序。因此,体会掌握分数混合运算的顺序也是这节课的重点。

  教学目标

  知识与技能

  1、体会分数混合运算的顺序与整数是一样的,能正确进行计算。

  2、使学生掌握分数乘、除法的数量关系,能解决日常生活中的实际问题。

  过程与方法

  1、经历分析数量关系,画示意图、说等量关系等数学活动过程,学会建立解决问题模式。

  2、借助已有的知识与经验,学会提出问题、理解问题和解决问题,发展应用意识。

  3、在探索、分析过程中,体验解决问题策略的多样性。

  情感态度与价值观

  1、在数学学习活动中获得成功的体验,建立学习数学的自信心。

  2、培养学生独立思考的习惯。

  教学难点掌握分数混合运算的计算方法,并正确进行计算。

  教学难点掌握分数乘、除混合运算的计算方法。

  教学准备课件一份直尺不同颜色粉笔

  教法

  根据教材呈现的内容,在开展教学活动时充分利用情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而让学生自主列出算式进行计算,再对问题的解决组织讨论加以解释和交流算法之间的联系,明白分数混合运算的顺序。

  学法

  通过本节教学,使学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、正确计算、概括总结、检查的学习方法,养成善于学习的良好习惯。

  教学过程

  (一)复习铺垫引入新知

  1、(课件出示)说出先算什么,再算什么?

  这三道题帮我们回忆了什么知识?(生回答后小黑板:出示整数混合运算的运算顺序)

  2、(课件出示)计算。说出你是怎么计算的?(在计算过程中,能约分的先约分)

  3、说一说下列各分数的具体含义,找单位“1”画线段图,说数量关系,再列式:(进行环保意识教育:节约水资源要从现在做起,从我做起。)

  4、引入:刚才我们复习了整数四则混合运算的运算顺序和有关分数乘除法的知识。这节课将继续学习有关分数的知识。(板书:分数混合运算)

  (设计意图:通过对整数四则混合运——说运算顺序,再计算的复习,引起学生对四则混合运知识的积极回忆,使学生自然“迁移”过渡到本节课来,打牢学习的基础,以便顺利地进入下一阶段的.学习。教学中切实地复习那些在学生知识结构中对学习新知识能提供帮助的旧知识,由旧引新,可以促进学生进行知识的迁移,促进学生自主参与学习的全过程中。)

  (二)自主探索获取新知

  1、呈现情境图,提出问题。(课件出示数学书上第21页图)

  师:这是笑笑班上本期开展兴趣小组活动的情况,你从图中获得了哪些数学信息?

  师:航模小组有多少人?

  2、生独立完成,解决问题。教师重复问题后,要求学生:

  (1)独立思考,找单位“1”,画线段图分析数量关系。

  (2)列出解决问题的算式。

  (3)与同桌说说自己的解题思路和列式以及结果。

  3、在教师的有效引导下学生反馈解答情况

  (1)根据问题分析数学信息:我们要解决的问题是什么?(求航模小组有多少人?)

  A请同学们找到跟求航模小组人数有密切联系的数学信息,把它读出来。

  师:下面我们就来根据问题分析已知的数学信息。

  B请将求摄影小组人数有密切联系的数学信息读出来。

  师:也就是说要求航模小组有多少人,得先求到什么?(要先求到摄影小组的人数)

  师:通过读题我们已经知道了气象小组有12人。那么也就是说摄影小组的人数是多少人数的几分之几呢?(2)引导提问:

  师:摄影小组的人数是气象小组的,这里表示什么?(表示把气象小组人数平均分成3份,取其中1份)

  师:在这里是把什么做为分的对象?(气象小组的人数)

  师:这里的单位“1”是谁? (气象小组的人数)

  (3)用线段图表示数量之间的关系(生独立画图)

  师:可以怎样画线段图来表示这样的数量关系。谁来说说数量关系?那么可以求出摄影小组的人数吗?

  师:是把什么做为分的对象。(摄影小组的人数)这里的单位“1”是谁?(摄影小组的人数)

  师:你能画线段图来表示这样的数量关系吗?

  (4)分数混合运算的顺序与整数混合运算顺序的探讨。(下面谁来说说自己怎样列式的。)

  4、改题再解答:航模组有3人,求气象组有多少人?(学生独立完成后汇报)

  师:要解决这个问题。先求什么?再求什么?

  5、小结:

  师:观察综合算式,你发现它跟我们以前学过的整数混合运算有什么不同?

  师:针对综合算式,结合每一步的意义来说一说是怎么计算的?(通过计算我们发现计算顺序是从左到右依次计算,而以此类推。)

  师:同学们认为分数混合运算的顺序与整数混合运算的顺序有什么联系呢。(分数混合运算顺序与整数混合运算顺序一样:先乘除后加减,在同级运算中,从左到右依次计算,有小括号的要先算括号里面的。当然如果有简便算法的除外。)

  6、书写格式:接着结合例题,说明分数连乘时可同时进行约分。注意书写格式。

  7、学生看书,齐读结论

  (设计意图:通过这个环节的教学,鼓励学生分析题中的数字信息和数量关系,明确所要解决的问题,然后了解要解决的这个问题需要什么条件,从而进行计算,明确分数混合运算的顺序。体现了教学以教材为主,灵活的使用教材,又忠实于教材,这样更能突出,这两道分数四则混合运算题的代表性,能让学生更好地感受所学知识与教材例题的重要作用和价值所在。)

  (三)、应用知识解决生活中的问题

  (课件出示:生独立完成,师巡视个别指导,集体反馈及时纠正)

  1、完成书22试一试以及数学书22页练一练

  第一题。请2名学生上台板演后集体订正。(强调:运算顺序特别是有括号的)

  2、完成书22页的数学应用2—4题。(写出数量关系或画图后再解答)

  3、出示数字故事(让学生讲一讲这一个数学故事,小组讨论每人一杯够吗?)

  (设计意图:通过这个环节的教学,把学生所学知识运用于现实生活,从中让学生感受所学知识的应用价值。教学中强调解题顺序与运算顺序的吻合,这样更能突出混合运算顺序在解决问题中的重要作用,能让学生更好地感受所学知识的应用价值。在解决混合运算问题的同时,培养学生的学习兴趣及良好的学习习惯)

  (四)、知识回顾总结延伸:

  通过今天的学习你有什么收获呢.(师生小结本次教学活动的重点内容.)

  (设计意图:回忆巩固,完善学生的认知,构建完整的知识体系。)

  板书设计:

混合运算的教学设计6

  一、标准分析

  本单元在整理混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。

  二、学情分析

  学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,采用自主探索和小组合作相结合的学习方式开展学习活动。

  三、教学目标

  1、使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。

  2、在学生的头脑中强化小括号的作用。

  3、在练习中总结归纳出四则混合运算的顺序。

  四、教学过程

  (一)引入课题

  我们过去已经学习了四则混合运算的不少内容,知道了四则混合运算的`运算顺序,并能按混合运算的运算顺序进行计算。今天这节课,我们继续学习整数的四则混合运算,(板书课题)总结我们已经学过的整数四则混合运算的运算顺序,提高四则混合运算的运算能力。请小组合作,讨论整理总结四则混合运算的知识。

  (二)讲授新课

  出示例5

  (1)42+6×(12-4)

  (2)42+6×12-4

  学生在练习本上独立解答。(画出顺序线)

  两名学生板演。

  全班学生进行检验。

  上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?

  (三)小组讨论

  (四)汇报交流

  四则混合运算顺序有以下几种情况:

  第一:只有加、减法混合的运算,从左到右,谁在前先算谁;

  第二:只有乘、除法混合的运算,也是从左到右,谁在前先算谁;

  第三:加、减、乘、除法混合的运算,先计算乘除,再计算加减;

  第四:算式中有括号的,都要先算括号里面的,然后再按先乘除,后加减的顺序进行。

  (五)整理总结

  我们知道了加法、减法、乘法和除法统称为四则混合运算,我反问一句,四则混合运算指的是什么呢?

  关于四则混合运算的顺序,同学们讨论的结果是:四则混合运算可以分为两种基本情况:一种是没有括号的,一种是有括号的。没有括号的算式又分为两种,一种是只有加减混合或只有乘除混合,这样的混合运算顺序是什么呢?

  (六)巩固练习

  1、P12做一做第1题。

  (1)让学生说出各题的运算顺序。

  (2)独立进行计算。

  (3)汇报计算的结果,评议订正。

  2、P12做一做第2题。

  学校食堂买来大米850千克,运了3车,还剩100千克。平均每车运多少千克?

  (1)请同学们认真看题,弄清题中的信息和问题,分析他们之间数量关系,确定解决问题的步骤,再列式计算。

  (2)交流解决问题的方法和结果。

  3、P14第四题。

  下面各题,看谁做得都对。

  75+360÷20-572-4×6÷3

  75+360÷(20-5)(72-4)×6÷3

  (75+360)÷(20-5)(72-4)×(6÷3)

  教师巡视纠正。

  4、课堂作业

  (七)课堂总结

  回忆一下这节课的学习过程,我们一起来交流一下学习的收获。

混合运算的教学设计7

  一、教学背景分析

  1、教材分析

  《简单问题和混合运算》是冀教版教材第九册第二单元《小数乘法》第6时的内容,本课时内容是在学生掌握小数乘法的计算方法和整数乘法运算定律的基础上,把学生置身于解决问题的情境中,经历解决现实问题的过程,并用小数乘法知识解决简单问题,能应用运算定律进行小数简便运算。围绕“乘法的分配律”这一核心知识,通过“王老师要为幼儿园买香蕉、苹果各14千克,她带了150元钱,够吗?(香蕉5.6元/千克,苹果4.4元/千克)”的相关图片、信息,认识到现实生活中蕴含着大量的数学信息,感受到数学在现实世界中有着广泛应用,并能解决实际问题,能表达解决实际问题的过程。

  2、学生分析

  学生在整数乘法中,已经掌握了乘法的三种运算定律,会进行整数乘法的简便运算。五年级再一次安排简单问题和混合运算,目的是让学生利用简算方法的有效迁移,学会小数乘法的简便运算,并能利用相关知识解决有关混合运算实际问题。基于以上分析,我们确定本课的教学重、难点:促进学生已有经验的正迁移,解决生活中简单的实际问题,归纳概括小数混合运算的运算顺序。

  二、案例描述

  自学自研,教室里静得出奇,孩子们的大脑在飞速地运转,享受着独立思考的快乐;小组交流开始了,组长有序的组织,教室里热闹起来,你补充,我纠错,他质疑……合作的氛围热烈而真诚。当教室里慢慢静下来的时候,小组交流结束了,全班展示交流开始:

  师:老师刚才发现,九组组长对本组6号进行了有效的帮助,她为小组赢得2分!刚才老听到二组有掌声响起,请二组组长起立,告诉我们为什么?

  生:(二组组长杨宇宁)因为我们组的1、2、3、4、5号同学全没做出那种简单的方法,而6号同学做出来了,我们给他掌声鼓励!

  师:真好!我们还学会了激励性评价!现在,我们目光聚焦前黑板,请对抗组来点评1组的展示。

  (二组朱琪大方地走上讲台)

  生1:大家好!我代表二组点评,请大家看这里,5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元),140﹤150,我认为最后这步比较很重要,还应该加上单位“元”,二组同学做对了!我给他4.5分,因为他们的书写上山了,最后一步还没写单位。

  (马上有好几个学生站起,“我补充!”“我纠错!”“我质疑!”)

  生2:(九组的崔佳豫跑上台来,转身面对大家)大家好!我来为二组点评的同学补充,从题中我们获得信息:香蕉每千克5.6元,5.6×14是王老师买14千克香蕉的价钱,苹果每千克4.4元,4.4×14是王老师买14千克苹果的价钱,5.6×14+4.4×14是王老师买香蕉和苹果的总钱数。我的补充完毕,大家还有什么意见或补充?

  生3:(4组的陈思彤从座位上站起)我反驳,我认为最后一步单位不加也可以,因为题里已经明确给了单位,既然140﹤150写出来了,大家都明白单位是元。

  师:我们大家来看一看,单位可以不加吗?(绝大多数学生点头认可)点评,我们给几分?

  (学生有的在喊“3分”,有的伸出手指示意。)

  师:因为朱琪这一学期刚转到我们学校,但她很快融入了我们得集体,有勇气上台点评,所以老师给他加1分的勇气分,给她4分,大家同意吗?(生齐答同意)

  师:请大家目光继续聚焦我们的前黑板,请对抗组点评5组的展示。

  生:(6组崔美地迅速站到黑板前)大家好!我代表6组点评,请大家看这里,香蕉每千克5.6元,苹果每千克4.4元,5.6+4.4表示每千克香蕉和苹果共多少元,因为王老师要为幼儿园买香蕉、苹果各14千克,所以再乘14就是王老师共花的钱数,然后再和王老师带的150元钱做一下比较,就知道钱带够了!5组的同学做对了,而且书写很工整,所以我给他们5分!我的点评完毕,大家还有什么疑问或补充吗?

  ……

  师:点评我们给她几分?说出你的理由!

  生:4分,因为声音太小了!

  师:我们回头看一看两种做法,如果让你向你的组员推荐,你会推荐哪种方法?理由是什么?

  生1:如果让我推荐,我会推荐5组的做法,因为5组方法更简便!

  生2:(郭一萱迅速站起来)我有不同做法!5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150所以王老师带的钱够!

  师:来,你说,老师帮你写到黑板上。(随学生回答,师板书在这种做法综合算式的旁边)

  生3:(郭一萱的话音刚落,1组的贾鑫卓站起来)老师,我也有不同做法,5.6+4.4=10(元),10×14=140(元),140﹤150所以王老师带的钱够!

  师:我们先来看郭一萱的补充,再与一组的展示做一下比较,两种方法有本质的区别吗?我们看郭一萱是怎么做的?(分步,孩子们边分析边回答着)那1组展示的是什么算式?(有学生在下面小声说“综合”)对,两者只是分步与综合的区别,所以同属于一种做法。贾鑫卓补充的也是。另外,两位同学的补充应该在两种方法点评完毕,下次注意!

  师:如果让你推荐,你会推荐哪种?

  生:(2组的杨宇宁站起)如果让我推荐,我会推荐郭一萱的做法,因为四年级老师说过,分步做更容易得分!

  生:(4组的陈思彤又站起来)我同意杨宇宁的意见,因为这样做可以的高分!

  生:(郭一萱又站起来)我反驳,因为这种做法计算容易出错,还不如列综合算式得分多!(听课老师笑了,讲课老师也笑了,多么真实的课堂!)

  师:刚才你们都是从分数角度来分析的,我们能从其他角度来想一想吗?

  生:我还是觉得5组的方法更简单,因为5.6+4.4=10,得到的是整数,计算简便。

  师:但这种方法适合所有的题吗?有什么条件吗?

  生:我觉得只有数量相等的时候才可以用这种简便方法,而其他时候只能用一组的方法。

  师:分析的很有道理,虽然整数乘法的运算定律对于小数乘法同样同样适用,但我们需要有选择的使用。同学们愿不愿接受更难的挑战?那就请你观察两个综合算式,说出运算顺序。

  ……

  三、教学反思

  在自学自研部分,虽然老师只叫两组不同方法展示,但在全班交流环节,分步、综合两种方法全展示在黑板上:(1)5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元)140﹤150(2)5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150(3)5.6×14+4.4×14=(5.6+4.4)×14=10×14=140(元),140﹤150(4)5.6+4.4=10(元),10×14=140(元),140﹤150而且当老师提出问题“如果让你向你的组员推荐,你会推荐哪种方法?理由是什么?”孩子们的理由是多角度的:“如果让我推荐,我会推荐5组的做法,因为5组方法更简便!”“如果让我推荐,我会推荐郭一萱的做法(5.6×14=78.4(元)4.4×14=61.6(元)78.4+61.6=140(元)140﹤150),因为四年级老师说过,分步做更容易得分!”“我同意杨宇宁的意见,因为这样做可以的高分!”“我还是觉得5组的.方法更简单,因为5.6+4.4=10,得到的是整数,计算简便。”……随着孩子们讨论的逐步深入,老师抛出更深层次的问题“但这种方法适合所有的题吗?有什么条件吗?”“我觉得只有数量相等的时候才可以用这种简便方法,而其他时候只能用一组的方法。”在孩子们思维的交锋中,每个人都重新建构了自己的计算方法,或(1),或(2)……虽然算法多样化为构建过程提供了开放的场景,为每位学生提供了一个思考、表达自己独特见解的时空,但我们最终的落脚点,仍然是课堂所呈现出来的鼓励学生从多样化的讨论中吸纳别人的经验,把他人的思想精华纳入到自己的认知领域,由低层次思维向高层次思维逐层优化,逐步达到算法的个体优化。

  一节课上下来,总体感觉,孩子们的精彩成就了精彩的课堂,让我们尽情享受数学课堂,让孩子们在知识的超市尽情畅游,体验生命的狂欢。走在课改的路上,我们边走边思考,思考让我们逐渐深刻!

混合运算的教学设计8

  第1课时 同级运算

  教学目标

  1.根据加减混合、乘除混合式题的运算顺序,正确地列脱式进行计算,理解运算算理及运算方法。

  2.通过小组合作探究的方式,掌握运算顺序并准确计算,提高学生的计算能力。

  3.培养学生勤于思考的良好习惯,激发学生乐于探究数学奥秘的学习兴趣。

  教学重点、难点:

  1.掌握加减混合、乘除混合运算的运算顺序,能按从左到右的顺序进行计算。

  2.知道混合运算的运算顺序。

  学情分析:

  二年级学生已经学会了加、减、乘、除的基础知识,懂得简单的连加、连减、加减混合的计算方法,有一定的计算基础,

  教学准备:多媒体课件。

  教学过程

  【复习导入】

  小朋友们,今天我们先来复习一下!

  说出各题的运算顺序,再计算。

  16+9+8=

  32-10-6=

  25+20-10=

  48-8+17=

  学生先独立完成,再集体订正。订正时,让学生说说每个算式里含有哪些运算,是按怎样的运算顺序进行计算的。

  【新课讲授】

  1.仔细观察,收集信息,解决问题。

  图书阅览室里上午有53人,中午走了24人,下午又来了38人,阅览室里下午有多少人?

  问题:

  (1)同学们在做什么呢?

  (2)从图中你获得了哪些和读书有关的信息?

  (3)要求“阅览室里下午有多少人”该怎样列式?

  2.反馈交流,总结加减运算的顺序。

  分步算式 综合算式

  53-24=29 53-24+38=67

  29+38=67

  问题:像53-24+38这样的算式是综合算式,能说说你是按怎样的运算顺序进行计算的吗?

  小结:在没有括号的算式里,只有加法、减法运算时,要按从左往右的顺序计算。

  3.学习脱式计算格式。

  问题:

  (1)这道题先算什么?再算什么?

  说明:(在“53-24”的下面画上横线)为了清楚地看出运算的'顺序,可以脱式进行计算,呈现出运算的顺序和每次计算的结果。在算式的下面写出第一步计算的结果(29),还没有参加计算的数照抄下来(+38),在算式的下面再写出第二步计算的结果(=67)。注意:把等号上下对齐。

  (2)在书写时,我们应该注意什么?

  (3)谁能完整地说说这道题我们是怎么算的?

  4.巩固脱式计算格式,体会同级运算的顺序。

  48-8+17 15÷3×5

  问题:

  (1)你能把这两道题写成脱式计算的格式吗?

  (2)这个算式“15÷3×5”先算什么?再算什么?

  (3)这样的题我们是按什么顺序计算的?

  【课堂作业】

  1.教材第47页“做一做”。

  2.教材第50页练习十一第1~3题。

  【课堂小结】

  师生共同总结本节学习的内容和应注意的问题。

混合运算的教学设计9

  教学目标:

  1.体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。

  2.利用分数加、减、乘、除法解决于生活中的实际问题、发展学生的应用意识。

  教学重点:掌握分数混合运算的运算顺序;利用分数运算解决实际问题;

  教学难点:利用分数四则运算解决实际问题。

  教学过程:

  一、复习铺垫

  1.说出下列各题先算什么,再算什么?

  98÷8×2438×(96÷3)28×4÷7

  2.说出下列各题的数量关系。

  苹果的筐数是梨的

  衣服的价钱是裤子的

  小明的体重是爸爸的

  一本书,看了

  二、设置问题情境,引发探究

  1.出示本课的情境图:

  2.分析应用题的`数量关系:

  (1)观察课件,分析图上的数学信息和问题,说一说其中的数量关系。

  抽生回答。

  (2)尝试用自己的办法分析题意,可画线段图。

  (生尝试练习)

  (3)生汇报自己画图过程,同学评议。

  3.在教师的有效引导下学生反馈解答情况

  (1)根据问题分析数学信息:我们要解决的问题是什么?(求航模小组有多少人?)

  请同学们找到跟求航模小组人数有密切联系的数学信息,把它读出来。

  师:下面我们就来根据问题分析已知的数学信息。

  请将求摄影小组人数有密切联系的数学信息读出来。

  师:也就是说要求航模小组有多少人,得先求到什么?(要先求到摄影小组的人数)

  师:通过读题我们已经知道了气象小组有12人。那么也就是说摄影小组的人数是多少人数的几分之几呢?

  引导提问:

  师:摄影小组的人数是气象小组的,这里表示什么?(表示把气象小组人数平均分成3份,取其中1份)

  师:在这里是把什么做为分的对象?(气象小组的人数)

  师:这里的单位“1”是谁?(气象小组的人数)

  (2)用线段图表示数量之间的关系(生独立画图)

  师:可以怎样画线段图来表示这样的数量关系。谁来说说数量关系?那么可以求出摄影小组的人数吗?

  师:是把什么做为分的对象。(摄影小组的人数)这里的单位“1”是谁?(摄影小组的人数)

  师:你能画线段图来表示这样的数量关系吗?

  (3)分数混合运算的顺序与整数混合运算顺序的探讨。(下面谁来说说自己怎样列式的。)

  分数混合运算的顺序与整数混合运算顺序一样。师结合例题,说明分数连乘时,可以同时进行约分。

  三、练习巩固:

  1.分数混合运算2道,练一练1题

  2.基本练习3道,说清楚思路。自主完成,其中一道可要求画图。

  3.思维拓展练习2道,其中一道可以是书上的数学故事,另一道练习设计设想。

  (1)选条件,解决问题。

  (2)自填条件回答问题。

  四、课堂小结

  1.谈谈今天这节课你有什么收获?

  生畅所欲言后,并鼓励学生把今天的收获写入数学日记中。

  2.看来同学们今天的收获真不少。因此,我们在生活中要做一个有心人,多观察,勤动脑,勤思考,一定会收获到更多的数学知识。最后老师送给你们两句话。

  生活中有丰富的数学知识,希望同学们能做一个观察者、思考者。

  数学中有无穷无尽的奥秘,希望同学们能做一个探索者、发现者。

混合运算的教学设计10

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第35~36页。

  教学目标

  1. 使学生在解决实际问题的过程中,理解并掌握三步混合运算的顺序,并能正确地进行运算。

  2. 使学生在理解混合运算顺序的过程中,进一步积累数学学习的经验,能用三步计算解决实际问题,发展数学思维。

  3. 使学生在数学学习中,进一步感受混合运算的应用价值,增强对数学学习的信心,培养严谨、认真的学习习惯。

  教学过程

  一、 铺垫

  1. 第一轮第一次游戏:用三张牌“算24点”。

  谈话:“算24点”游戏是我国劳动人民发明创造的,它具有益智、怡情等功能,因而备受人们的喜爱。今天,我们也来玩一玩“算24点”的游戏怎样?

  呈现三张扑克牌:2、4、10。

  待学生列出:2 × 10 + 4和4 + 2 × 10之后,教师追问:两道算式不同,都能算得24吗?为什么?

  板书:算式中有乘法和加法时,先算乘法,再算加法。

  2. 第一轮第二次游戏:教师再呈现三张扑克牌:4、4、7。

  提问:

  (1) 这道题我们也可以列出两道算式吗?为什么?

  (2) 4 × 7 - 4的算式中,我们可以先算减法吗?

  (3) 算式中有乘法和减法时,应该按什么顺序进行运算呢?

  [设计意图:本节课的引入方式可有多种,比如教材中联系实际问题,从具体的情境引入便是其中的一种。可这里似乎也有一些值得讨论的地方:一方面,我们可以借助具体的情景帮助学生理解混合运算的顺序,以便从算理上弄清为什么“先算乘、除法,后算加、减法”的道理。但另一方面,我们又不能不看到,到了三步以上的混合运算,如果要嵌入具体的情景之中,对学生的思维要求,特别是解决问题能力的要求是比较高的。因此,新课的引入,不应拘泥于一种固定不变的模式,而应该从学生已有的知识经验出发,寻求一个最能激发学生探索愿望、最有利于学生自主探索的切入口,使学生在有效的学习活动中得到充分的发展。

  怎样才能使教学活动既符合学生的认知基础,又富有一定的现实性和挑战性呢?我想到了“算24点”这个游戏。

  理由有三:

  一是这个游戏学生玩过,有经验、有兴趣,且不会在游戏规则的问题上耗费太多的时间;

  二是游戏的机动性强,三张牌、四张牌都可以玩,而用三张牌玩,刚好对应学生已经掌握的两步混合运算知识,用四张牌则对应了这节课将要学习的.新知,这使得学生激活已有的经验成为可能,又使得旧知向新知的过渡变得自然而顺畅;

  三是算式被赋予了恰如其分的“意义”,学生要算得24,在头脑中已经经历了一个“分步列式”的过程,一旦形成综合算式,并不影响头脑中原有的运算顺序,相反,学生正是用头脑中已经确定的运算顺序来阐释综合算式的运算顺序,这就使得综合算式的运算顺序与学生头脑中的解题顺序对应起来,从而体会到混合运算顺序的合理性。]

  二、 新授

  1. 第二轮第一次游戏。

  引导:我们用四张牌来玩“算24点”游戏,情况会怎样呢?

  教师呈现四张扑克牌:2、2、5、7。

  要求:个人独立思考,尝试列出综合算式,然后将意见带到小组内进行交流。

  小组交流:

  (1) 小组内成员所列的算式都相同吗?

  (2) 这些算式运算的顺序和步骤也相同吗?

  (3) 比较不同的运算顺序,有区别吗?

  根据学生的回答,教师分别呈现:

  2×5+2×7 2×5+2×7

  =10+2×7=10+14

  =10+14=24

  =24

  2. 引导比较:两种运算顺序都是正确的,但哪一种运算过程更简单一些呢?

  3. 教师呈现:40 ÷ 4 - 28 ÷ 7,要求学生独立计算。

  4. 比较:2 × 5 + 2 × 7和40 ÷ 4 - 28 ÷ 7的运算顺序有什么相同的地方?

  5. 第二轮第二次游戏。

  教师呈现四张扑克牌:3、6、6、9。

  学生先行独立思考后,在小组内进行第二次合作。

  学生可能列出的算式有:6 × 6 - 3 - 9,6 + 6 ÷ 3 × 9,6 + 9 ÷ 3 × 6,6 + 6 × 9 ÷ 3,3 + 6 + 6 + 9……

  6. 将上面的算式按运算顺序的不同进行分类,观察分析后比较:

  (1) 哪些算式不是按照从左往右的顺序进行运算的?这些算式有什么共同的特征?

  (2) 哪些算式应该按照从左往右的顺序进行运算?这些算式有哪些相同和不同?

  (3) 在没有括号的算式里,如果有乘、除法和加、减法,应按照怎样的顺序进行运算呢?

  7. 小结规律,板书课题:混合运算。

  [设计意图:学生得出“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法”,其实是经历一个归纳推理的过程。为了让学生对得出的结论深信不疑,我们应努力呈现各种情况,让学生在分析、比较、综合、概括的过程中加深对事理的理解。这一部分,我安排了两轮游戏,其作用分别对应于教材中的“例题”和“试一试”两部分的知识要点。第一部分侧重于体验学习,学生亲历尝试和交流,体会将算式中的乘法同时运算的优越性。第二部分侧重于分类和归纳,在开放的情境中比较同一级运算与两级运算的区别,进而发现两级运算的共同特征。值得一提的是,这一部分我着意引导学生进行了多次比较,如简单运算与较复杂运算的比较,同一类运算中不同运算顺序的比较等等,落脚点都是为了帮助学生建立起两级运算的运算顺序,增强学生的抗干扰能力。]

  三、 巩固

  1. 先说一说下面各题的运算顺序,再计算。

  80 ÷ 2 + 76 ÷ 4 240 ÷ 6 - 2 × 17

  45 - 20 × 3 ÷ 4 51 - 36 ÷ 3 + 25

  评讲:第一行两道题怎样计算更简便些?第二行两道题的运算顺序有什么不同?为什么会有这样的不同?

  2. 小虎学了今天的知识以后,很高兴,老师要求完成20 × 5 - 20 × 5和20 × 5 ÷ 20 × 5两题的计算,小虎不一会儿就算好了。同学们,我们也来看一看,小虎做得对吗?

  20×5-20×5 20×5÷20×5

  =100-100=100÷100

  =0=1

  [设计意图:小虎做的两题形式上比较相近,但第二题属同一级运算,第一题是两级运算。根据教学的前馈信息,学生常常容易发生混淆,故此处将两题同时呈现出来专门研究,便有了必要性。]

  3. “想想做做”第4题。

  学生独立完成后,讨论:求兵兵家的人均居住面积比乐乐家大多少,要先算什么,再算什么?

  4. 在数与数之间添上加、减、乘或除号,使计算结果正好等于右边的数。

  2 2 2 2 = 1

  2 2 2 2 = 2

  2 2 2 2 = 3

  2 2 2 2 = 4

  2 2 2 2 = 5

  [设计意图:练习设计努力体现针对性、层次性、综合性、开放性等特点,不仅立足于帮助学生巩固计算的方法,加深学生对本节课知识的理解,而且在不断变式的过程中,引导学生学习有趣的数学、有用的数学、智慧的数学。]

混合运算的教学设计11

  教学内容:

  苏教版四年级(下册)第35—36页例题、“试一试”,“想想做做”第1--6题。

  教学目标:

  1、让学生联系解决生活实际问题的过程感悟、理解并掌握不含括号的三步混合运算的顺序,能正确地进行计算,并能用以解决三步计算的实际问题。

  2、让学生在学习活动中增强类比迁移能力和抽象概括能力,获得成功体验,感受学习数学的乐趣。

  教学重点:掌握三步计算的运算顺序

  教学难点:运用三步计算解决实际问题

  设计理念:运用知识的迁移,自主探索规律

  教学准备:课件

  教学过程:

  一、复习铺垫

  说出先算什么,再计算。

  560+4×220-15÷3

  学生在纸上直接进行计算,指名板演,集体订正。由学生小结两步混合运算的运算顺序。(在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。)

  二、创设情境、导入新课

  1、谈话:很多同学都喜欢下棋,本周兴趣小组要开展棋类活动,老师准备购买一些棋具。我们一起去看看老师买棋时遇到了什么数学问题:出示主题图。这是一道购物的实际问题,遇到这类问题你马上会想到哪些基本数量关系?(课件出示数量关系:单价×数量=总价)

  2、学生看图说一说:从图中你知道哪些数学信息?

  (1)象棋一副12元,围棋一副15元;

  (2)老师要买3副象棋和4副围棋。

  3、想一想,怎样才能算出买象棋和围棋一共要付多少钱?

  (1)小组合作,分析数量关系、尝试列式计算。(根据单价×数量=总价,让学生明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两种棋的总价加起来就是一共要付的钱。)

  (2)由组长汇报,板演组内算式,板演后再说说列式的依据。(学生可能会得到以下算式)

  12×3=36(元)15×4=60(元)36+60=96(元)12×3+15×415×4+12×3

  (3)集体订正,理解数量关系。(如果学生没有列出综合算式,则引导学生从数量关系上来列式,12×3是求象棋总价,15×4是求围棋总价,求一共要付多少钱要用加法连起来。象棋总价加围棋总价或围棋总价加象棋总价)

  比较:12×3+15×415×4+12×3和复习题有什么不同?

  学生回答:复习题是两步计算的混合运算,这两题是三步计算的混合运算。

  小结:像这样含有三步运算的混合运算怎样计算呢?这就是我们今天要一起来研究的内容。(板书课题)不含括号的四则混合运算

  三、探索算法

  1、根据:12×3+15×415×4+12×3

  思考讨论:这两个算式,先算什么?再算什么,为什么?

  尝试:学生独立试做,再指名由学生板演。

  (根据单价×数量=总价,让学生明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两种棋的总价加起来就是一共要付的钱,通过让学生有意识的与分步计算反复对比,明白这也是这道算式的计算顺序。)

  方法一:12×3+15×4方法二:12×3+15×4

  =36+15×4=36+60

  =36+60=96(元)

  =96(元)

  (包括分步算出两个积与同时算出两个积的情况,如有运算顺序错误的情况也一并板演)。

  (3)比较:两种计算方法,哪一种方法更简单?再利用第二种方法计算15×4+12×3。

  通过反复对比,引导学生自主探究,鼓励学生大胆推导出不含括号的.三步混合运算顺序。

  汇报小结:(在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。汇报的同时引导学生了解:第一步脱式两个乘积可以同时计算出来。)

  独立计算,完成课本例题填空。

  2、出示“试一试”:150+120÷6×5`

  小组合作,讨论:算式中有哪些运算?在这里除和乘连在一起,应该先算什么,再算什么?

  思考并交流,说运算顺序,并标上运算顺序,独立计算,集体订正。

  3、小结:今天学的含有加、减、乘、除的三步混合运算的式子应该按什么顺序计算?

  指导学生阅读书上的结语:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  四、巩固应用

  1、说说每组运算顺序有什么异同。

  ①40×2-15×540÷2+15÷5

  ②50÷5+8×550+5×8+5

  2.下面各题最后一步求的是什么?

  (1)28×2-45÷5①求积②求差③求商

  (2)84×3-98+2①求和②求差③求积

  (3)90+56÷2×3①求积②求和③求商

混合运算的教学设计12

  一、教学目标

  (一)知识与技能

  体会“小括号”和“中括号”在混合运算中的作用,掌握运算顺序,会计算带有“小括号”和“中括号”的三步题目,并会列综合算式解答有关的实际问题。

  (二)过程与方法

  引导学生经历带有“小括号”和“中括号”的混合运算的运算顺序探索过程,培养学生独立思考、独立解决问题和积极参与学习活动的能力和意识。

  (三)情感态度和价值观

  在主动参与数学活动的过程中获得成功的体验,培养学生认真、细致的计算习惯。

  二、教学重难点

  教学重点:掌握含有“小括号”和“中括号”的三步混合运算的运算顺序。

  教学难点:体会“小括号”和“中括号”的作用,会列带有“小括号”和“中括号”的算式解决实际问题。

  三、教学准备

  课件、计算卡。

  四、教学过程

  (一)复习旧知,导入新课

  1.师:同学们,这里有一些两步计算的式题,如果既有乘、除法,又有加、减法,我们应该先算什么,再算什么?请大家试着标出来。

  2.出示问题:

  说说下面各题的运算顺序。

  (1)7×2+30 (2)175-25×4

  (3)40÷4+6 (4)48-18÷2

  3.课件辅助,显示结果:

  (1)7×2+30 (2)175-25×4

  (3)40÷4+6 (4)48-18÷2

  4.师:是这样的吗?画线的这一步应该先算。在混合运算中我们要先算乘、除法,后算加、减法。这是我们已经学过的知识。今天我们继续来研究与计算顺序有关的知识。

  (板书:四则混合运算)

  【设计意图】有人说:“智慧不是别的,而是一种组织起来的知识体系”。这里所说的“组织起来的知识体系”就是指系统化的知识。课的开始,通过对已有知识的复习,它不仅使所学知识系统化,加强了对知识的理解、巩固和提高,更重要的是可以唤醒学生对相关知识的探究意识。

  (二)经历过程,感受作用

  1.师:学校艺术节快到了,每个兴趣小组正在进行紧张的练习,让我们一起去看一看!(出示课件)

  学校航模小组男生有12人,女生有4人,美术小组是航模组的2倍。

  2.师:从图中你了解到哪些信息?

  3.师:根据题目中的信息你能提出什么数学问题吗?

  预设:

  生:美术小组有多少人?

  4.师:这个问题怎样解决呢?同学们自己将算式写下来,计算一下。

  5.学生独立完成,教师采样

  对比方案:

  (1)12×2+4×2

  (2)(12+4)×2

  (3)12+4×2

  6.比较方案:(12+4)×2和12+4×2的区别。

  (1)问:这两个算式有什么区别?为什么这两个算式的结果不一样?

  预设:

  生:运算顺序不同

  (2)问:两个算式分别表示什么意思?

  预设:

  生:第一个算式表示男女生人数和的两倍,第二个算式表示男生和女生的两倍。

  7.师:这样看我们的运算顺序除了先乘、除,后加、减外还需要补充什么?

  预设:

  生:有小括号先算小括号里面,再算小括号外面的。

  【设计意图】小学阶段的计算教学不能仅仅着眼于“算”本身,应该在具体情境当中予以应用。计算不是单独割裂的,而是一种应用手段。通过对实际问题的解决和分析,在比较中自然的感悟知识探索的必要,形成最终正确的结论。

  (三)深入研究,完善发现

  1.继续出示挂图:合唱组及问题。(合唱组:64人,合唱组的人数是美术组的几倍?)

  2.师:看到这个问题你打算怎样解决?

  预设:

  生:合唱组的人数÷美术组的人数=几倍

  3.师:刚才,我们分步解答了这个问题,先算出了——(美术组的人数),然后用——(合唱组的人数÷美术组的人数),现在你能不能把这两个算式合并成一个综合算式,在本上试试看,只列式。

  (学生尝试,教师巡视,指名用不同方法的学生板演。)

  预设:可能出现:方法一: 64÷(12+4)×2

  方法二: 64÷((12+4)×2)

  方法三: 64÷[(12+4)×2]

  4.师:我们先来看这个同学列的综合算式,请你说说看,你是怎么想的。(逐一比较学生的算法)

  (1)方法一:

  ①师:这个算式,问题出在哪里?

  预设:按照运算顺序,最后算乘法了,而这题的最后一步应该算除法。

  ②师:要解决这个问题的关键是要先算出美术组的人数,也就是(12+4)×2。,这样就和他的算式矛盾了,看来得改变这个算式的运算顺序,怎样解决呢?

  (2)方法二:

  师:再加一个括号,来看看这个算式怎么样?

  预设:连续两个小括号,重复了,有些看不清楚。

  (3)方法三:

  ①师:数学上规定,这个算式中已经有小括号了,再添加括号,就要用到中括号。

  ②师:像这样的括号就是中括号。伸出手来,一起跟我写一遍(描)。 板书:[ ]

  ③让学生尝试加中括号:请你在你的综合算式里添上中括号。

  5.揭示课题:今天这节课,我们就要来研究含有小括号和中括号的混合运算。(板书课题)

  6.师:这时的算式中有小括号,又有中括号,应该怎样计算呢?同桌互相说说这题的运算顺序。

  有信心试一试吗?

  7.介绍递等式中一步一步脱式的过程和书写的格式要求(等号位置,小括号算好后脱掉,移下来的是中括号)。

  8.师:你觉得第一步应该先算?也就是要算出──航模组的人数。

  64÷[(12+4)×2]

  =64÷[16×2]

  =64÷32

  =2

  9.师:回顾头来看一下,这里的两个算式,一个只有小括号,一个又添加了中括号,那这个中括号在这里起到了什么作用?

  总结:对呀,中括号和小括号一样,也能改变题目中的运算顺序。

  10.师:在一个算式里,既有小括号又有中括号,应该按什么顺序运算?(学生尝试概括运算顺序)

  11.总结含有中括号的混合运算的运算顺序。

  课件出示:在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里面的。

  12.介绍有关“括号”的数学史。

  小括号“( )”是公元17世纪由荷兰人古拉特首先使用的。

  中括号“[ ]” 是公元17世纪由英国数学家瓦里士最先使用的。

  在以后的学习中还会用到大括号“{ }”,又称为花括号。大括号是法国数学家韦达在1593年首先使用的。

  【设计意图】把例题分解利于以旧引新,充分发挥旧知在学习新知中的“脚手架”作用,也有利于学生在总体上把握题目数量之间的关系和结构,使教学直指本课的要点含有中括号的.混合运算。在解决实际问题的过程中掌握运算顺序,能使学生对括号的作用以及运算顺序有更深的了解。

  (四)巩固练习,不断深化

  1. 基础练习。P9做一做

  先说一说下面各题的运算顺序,再计算。

  (1)360÷(70-4×16)

  (2)158-[(27+54)÷9]

  2.综合练习。P11 练习三 3

  下面各题,看谁做的都对。

  72-4×6÷3 6000÷75-60-10

  (72-4)×6÷3 6000÷(75-60)-10

  (72-4)×(6÷3) 6000÷[75-(60-10)]

  (1)独立解题。

  (2)交流结果。

  (3)对比说明计算顺序。

  3.发散练习

  根据运算顺序添上小括号或中括号。

  (1)32×800-400÷25 先减再乘最后除。

  (2)32×800-400÷25 先除再减最后乘。

  (3)32×800-400÷25 先减再除最后乘。

  【设计意图】围绕本课的教学重点,让学生在比比算算的过程中进一步体会有括号的混合运算的运算顺序,同时把相关内容进行了整理,使学生对混合运算的顺序有更全面的认识。

  (五)拓展知识,评价总结

  1.师:这节课我们学习了什么?

  (1)为什么要引入中括号?

  (2)中括号、小括号的作用是什么?

  (3)含有中括号的混合运算的顺序是什么?

  2.看漫画,悟道理。

  (1)问:同学们,上课前让我们先看一个小故事。

  ①一位教育专家请小学生参加一个小游戏。桌上放着个肚大口小的瓶子,里面有三个拴线绳的小球。

  ②专家说:“我一声令下,看哪组同学能在三秒钟之内,把三个小球拉出瓶口。”

  ③同学们轮番参加,结果不是三个小球都卡在瓶口,就是超过了时间,都失败了。

  (2)问:你有什么好办法,能在规定时间内完成任务吗?

  预设:

  生:规定顺序后,按顺序依次出来。

  (3)这个办法行吗,让我们接着看。

  专家一声令下,三个小球在规定的时间内,依次跳出瓶口,他们成功了!

  3.问:看过这个故事你有什么感想吗?

  预设:

  生:做事要有顺序、要团结协作。

  【设计意图】让学生对“理”的理解不仅仅停留在知识上,而是从更大的视角去看待数学问题,短时间看学生可能理解的不够深刻,但在学生漫长的成长过程中思想的种子已悄悄种下。

混合运算的教学设计13

  一、教学目标

  1.掌握二次根式的混合运算.

  2.掌握混合运算的应用.

  3.通过二次根式的混合运算,培养学生的运算能力.

  4.通过混合运算知识拓展,培养学生的探索精神

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:二次根式的混合运算.

  2.教学难点:混合运算的应用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【例题】

  例1 化简:

  (1) ; (2) .

  解:(1)

  (2)

  说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误.

  例2 解下列方程(组):

  (1)

  (2)

  (3)

  解:(1)

  .

  (2)①× ,得

  ③

  ②× ,得

  ④

  ③-④,得

  把 代入①,得

  解得 .

  ∴

  是原方程组的解.

  (3)由②,得

  ③

  ①× ,得

  ④

  ③-④,得

  把 代入①,得

  .

  ∴ 是原方程组的解.

  例3 已知 , ,求 的值.

  解: .

  .

  , ,

  ∴ .

  例4 已知 , ,求 的值.

  解: , .

  .

  (二)随堂练习

  1.教材中P206中8.

  2.解不等式: .

  解:

  ∴

  .

  3.已知 , ,求 的值.

  解:3. ,或 .

  .

  ∴

  .

  4.已知 , ,求: 的值.

  解 4.

  .

  5.已知 ,求 的值.

  解 5. .

  .

  6.不求方根的值比较 与 的大小.

  解 6.∵

  ∴

  ∴

  (三)总结、扩展

  根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的.化简要朝着条件化简的结果去化简.

  (四)布置作业

  教材中P207B组1、3和补充作业.

  补充作业:

  1.已知 ,求 的值.

  2.已知 , ,求 的值.

  (五)板书设计

  标 题

  1.例题……

  3.例题……

  2.练习题

  4.练习题

  八、背景知识与课外阅读

  二次根式的混和运算方法和顺序

  1.方法 (1)应用二次根式乘法、除法和加减法运算法则.

  (2)在实数范围内运算律仍适用.

  (3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.

  2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.

混合运算的教学设计14

  1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

  2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

  教学重点:二次根式混合运算算理的'理解。

  教学难点:类比整式运算准确快速的进行二次根式的混合运算。

  教学过程:

  一、情境诱导

  《二次根式混合运算习题课》教学设计-杨桂花

  二、练习指导

(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)

  练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

  三、展示归纳

  1、学生汇报解题过程,生说师写;

  2、发动其他学生评价补充完善;

  3、师画龙点睛强调:

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

  (2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

  四、变式练习

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

  《二次根式混合运算习题课》教学设计-杨桂花

  五、小结

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

  六、布置作业

  《二次根式混合运算习题课》教学设计-杨桂花

混合运算的教学设计15

  教材分析:

  本课是人教版数学二年级下册第五单元第三课时的一节课,前两节学了乘除混合,加减乘除混合,两节的铺垫,本课内容偏重于综合应用,计算难度不小。

  学生分析:

  二年级学生已经经过了乘除法的简单混合运算,加上小括号后计算顺序完全不一样,学生计算起来容易把括号丢掉,因此,本课的教学难度较大。

  教学内容:教材49页例3

  教学目标:

  1. 用迁移类推的方法,对含有小括号的两级混合运算进行脱式计算。

  2.使学生理解和掌握含有两级运算(有括号)的混合运算的运算顺序,并能正确运用运算顺序进行计算。

  3.培养学生养成先看运算顺序,再进行计算的良好习惯,提高学生的运算能力。

  教学重点:正确理解和运用含有两级混合运算(有括号)的运算顺序。

  教学难点:理解规定混合运算的运算顺序的必要性。

  教学用具:课件

  教学过程:

  一、激趣导入

  说出各题的运算顺序并计算。

  10-5+3= 7+(7-6)=

  10-(5+3)= 7+7-6=

  问题:

  1. 每组中上、下两题有什么相同点和不同点?

  2. 为什么数字相同,运算符号相同,可运算顺序不一样呢?

  小结:我们在一年级时就知道一个算式里有括号,要先算括号里面的。同样,在混合运算里,如果一个算式里有括号,我们要先算括号里面的。

  【设计意图:通过简单的对比,让孩子们认识括号的作用,开门见山,一目了然】

  二、探究新知

  (一)独立尝试有小括号的混合运算

  7×(7-5) (77-42)÷7

  问题:上面的题你们能用脱式做一做吗?

  (二)反馈交流,有小括号的算式的运算顺序

  7×(7-5) (77-42) ÷7

  =7×2 =35÷7

  =14 =5

  问题:

  1. 这两道题你们是怎么算的?2. 先算什么?再算什么?3. 在有小括号的混合算式中,按怎样的运算顺序进行计算呢?

  小结:算式里有小括号的,我们要先算括号里面的。在脱式计算时要注意在算式下面第一行抄下没有参加计算的数和运算符号,在第二行写出第二步计算的结果。等号要对齐。

  【设计意图:通过探索交流让孩子们掌握带括号计算的真谛,也让孩子们体会到合作探究的乐趣,为孩子将来团队意识的建立提供帮助】

  三、巩固练习

  (一)计算

  34-(28-13) 6×(7+2) (88-56)÷8

  76-(12+25) (12-5)×3 48÷(8-2)

  问题:1. 这6道题有什么相同点? 2. 有小括号的算式,按怎样的运算顺序进行计算?

  (二)说出各题的运算顺序并计算

  4+5×7 (72-18)÷9 24÷4+2

  (4+5)×7 72-18÷9 24÷(4+2)

  问题:每组中上、下两题有什么相同点和不同点?

  小结:算式里有括号的,要先算括号里面的。

  【设计意图:通过练习,进一步熟练带括号计算的顺序,体会括号的作用】

  拓展:在数字间填写适当的运算符号使等式成立

  2 2 2 2 = 2

  问题:

  1. 你看见什么了?

  2. 你能在前三个“2”之间填上合适的运算符号,使这个算式的运算结果等于第四个“2”吗?

  【设计意图:通过拓展,让孩子们将前面学过的.知识练习起来,从而达到孰能生巧的效果,各知识之间建立起联系,不再是孤立的片面的知识】

  四、全课总结:

  在混合运算中,算式里有括号的,要先算括号里面的。

  反思:本课教学学生在学的过程中极容易把括号丢掉,因此让孩子们理解括号的含义以及用法就特别重要,只有在理解的基础上才能做到熟练应用,所以我设计了大量的多种形式的练习以帮助孩子们理解括号含义,只有这样才能逐步提高孩子们学习的积极性,让孩子们爱上计算题。

【混合运算的教学设计】相关文章:

混合运算教学设计04-15

《混合运算》教学设计06-27

分数混合运算教学设计01-29

分数混合运算教学设计03-13

《加减混合运算》教学设计03-13

加减混合运算教学设计05-18

混合运算的教学设计(15篇)01-26

《分数加减混合运算》教学设计01-26

小学数学《混合运算》教学设计03-27