圆的面积教学设计

时间:2022-03-30 10:36:31 教学设计 我要投稿

圆的面积教学设计

  作为一位兢兢业业的人民教师,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么问题来了,教学设计应该怎么写?以下是小编收集整理的圆的面积教学设计,仅供参考,希望能够帮助到大家。

圆的面积教学设计

圆的面积教学设计1

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  【教学目标】:

  1.认知目标

  使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

  2.过程与方法目标

  经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3.情感目标

  引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  【教学难点】:理解圆的面积计算公式的推导。

  【教学准备】:相应;圆的面积演示教具

  【教学过程】

  一、情境导入

  出示场景——《马儿的困惑》

  师:同学们,你们知道马儿吃草的范围是一个什么图形吗?

  生:是一个圆形。

  师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?

  生:圆的面积。

  师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

  [设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

  二、探究合作,推导圆面积公式

  1.渗透“转化”的数学思想和方法。

  师:关于圆的面积你想了解什么?

  (什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)

  我们先来回忆一下平行四边形的面积是怎样推导出来?

  生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

  生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

  生:这样就把一个不懂的问题转化成我们可以解决的问题。

  师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

  师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

  2.演示揭疑。

  师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

  师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。

  师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

  [设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]

  3.学生合作探究,推导公式。

  (1)讨论探究,出示提示语。

  师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

  ①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

  ②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

  ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

  师:你们明白要求了吗?(明白)好,开始吧。

  学生汇报结果,师随机板书。

  同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

  (2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

  (3)揭示字母公式。

  师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

  (4)齐读公式,强调r2=r×r(表示两个r相乘)。

  从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

  [设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

  三、运用公式,解决问题

  1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?

  (再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2.教学例1。

  如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?

  要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)

  我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!

  师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (出示第三题)

  3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?

  分析题意后学生独立完成(组织交流,评价反馈)

  同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?

  4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。

  [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  四、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?

  知道哪些条件就可求圆的面积?

  (知道半径、直径或是周长)

  知道半径:S=πr2

  知道直径:S=π(d÷2)2

  知道周长:S=π(C÷π÷2)2

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  五、课后延伸

  圆除了转化为长方形,还能转化为什么图形呢?

  板书设计:

  长方形的面积 = 长 × 宽

  圆的面积 =圆周长的一半 × 半径

  S = πr × r

  = πr2

圆的面积教学设计2

  一、教学目标

  1、知识与技能

  (1)知道圆的面积公式推导过程;

  (2)会用圆的面积公式计算圆的面积;

  2、过程与方法

  经历动手操作讨论等探索圆的面积公式的过程;

  3、情感态度与价值观

  积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

  学思想。

  二、教学重点:

  圆的面积的计算

  三、教学难点:

  推导圆的公式的过程;

  教具准备:多媒体课件、圆片、胶水、剪刀

  四、教学过程:

  (一)、创设情境,导入新知

  1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

  2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)

  3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

  4、设疑:那么圆的面积怎样求呢?

  5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

  6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

  (1)、设疑导入,激起学生学习的兴趣.

  (2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.

  (二 )合作探究

  把圆形转化成以前学过的图形探究圆的面积公式

  师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

  (1) 学生动手操作;

  (2) 交流演示各组拼出的图形。

  (3)教师用课件演示。

  教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=

  问: 那么要求圆的面积必须知道什么条件?

  (三)解决问题

  (一)、已知圆的半径,求圆的面积

  例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

  (二)、已知圆的直径,求圆的面积

  例2、圆形花坛的直径的20 m,它的面积是多少平方米?

  (三)、已知圆的周长,求圆的面积

  例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?

  四 巩固练习

  1、判断对错:

  (1)直径相等的两个圆,面积不一定相等。。 ( )

  (2)两个圆的周长相等,面积也一定相等。 ( )

  (3)圆的半径越大,圆所占的面积也越大。 ( )

  2、根据下面所给的条件,求圆的面积。

  (1)半径3分米

  (2)直径20厘米

  五、知识拓展

  在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

  六、总结:学生谈收获

  反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

圆的面积教学设计3

  教材分析

  教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

  学情分析:

  1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

  2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

  教学目标

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点和难点

  教学重点: 圆的面积公式的推导及应用公式计算

  教学难点:探究圆的面积公式的推导过程

圆的面积教学设计4

  一、教学内容

  北京市义务教育课程改革实验数学教材第11册二、教学目标:

  1.知识与技能:使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

  2.过程与方法:引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

  3.情感态度价值观培养学生认真观察、深入思考,积极合作的良好品质。

  三、教学重点通过合作探究活动,推导出圆面积公式。

  四、教学难点:理解转化后的图形各部分与圆各部分的关系。

  五、教具学具准备:圆形纸片多媒体

  六、教学过程:

  (一)情境导入

  出示:圆桌照片

  师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

  生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

  师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

  怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

  【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务】

  (二)合作探究

  1、复习转化方法:

  师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

  师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

  师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

  师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

  1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。

  2、小组合作探究,师巡视,指导。

  【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。

  教师让学生带着3个问题进行自主探究的活动】

  3、汇报展示

  预设:

  学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。

  学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

  学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

  板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

  【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】

  4、课件演示,体验极限、化曲为直等数学思想。

  5、资料介绍,感受数学文化,

  师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)

  生:一人板书,其他学生本上练习。集体订正。

  6、知识性小结:

  师:如果我们想计算圆的面积,必须知道什么条件?

  生:半径。

  师:还可以知道什么,也能求出圆的面积?

  生:圆的直径或圆的周长?

  师:怎么求?

  【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

  教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】

  (三)解决问题:

  1、口算下面各圆的面积。

  2填写下表。

  半径直径周长面积

  2厘米

  6厘米

  6.28厘米

  3.某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?(四)、全课总结

  板书设计:圆的面积

  转化平行四边形面积=底×高

  联系圆的面积=×r=×r

  =πr×r=πr2

  公式S=πr2

圆的面积教学设计5

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

圆的面积教学设计6

  一、内容简介及设计理念

  本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

  本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

  第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

  二、教学目标:

  1.经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的面积计算公式计算圆的面积。

  3.在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

  三、教学重点和难点:

  圆的面积计算公式的推导。

  四、教学准备:

  圆形纸片、剪刀、多媒体课件等。

  五、教学过程:

  教学过程教师活动学生活动

  一、谈话引入,揭示课题

  二、探究新知。

  1、第一次探究,明确思路,体会“转化”的数学思想方法

  2、第二次探究,明确方法,体验“极限思想”

  3、第三次探究,深化思维,推导公式。

  4、解决问题

  5、小结

  三、知识应用(出示一个圆)大家看,这是什么图形?

  师:你已经掌握圆的哪些知识?

  师:关于圆你还想探讨什么?

  (板书课题:圆的面积。)

  师:谁能摸一摸这个圆片的面积。

  师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

  师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

  在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

  师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

  师:噢,你想把圆转化成我们学过的三角形来求它的面积。

  师:谁还有不同的方法?

  师:这像我们学过的什么图形?

  师:你想把圆转化成平行四边形来求它的面积,是不是?

  师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)

  师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

  师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

  师:为什么要折这么多份?

  师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

  师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

  师:你发现了什么?

  师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

  师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

  师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

  师:能让拼成的图形更接近平行四边形吗?

  师:哪个小组分的份数更多?

  (教师让另一组展示自己平均分成16份后拼成的图形。)

  师:和前两次拼成的图形比,又有什么变化?

  师:如果要让拼成的图形比它还接近平行四边形,怎么办?

  师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

  师:把这圆平均分了64份,看拼成新的图形呢?

圆的面积教学设计7

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的合作精神和创新意识。

  教学重点:

  推导出圆的面积公式及其应用。

  教学难点:

  圆与转化后的图形的联系。

  教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图

  教学过程:

  一、以新引旧、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。

  5、转化后的图形与原来的图形面积相等吗?

  6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容

圆的面积教学设计8

  【教学内容】

  16页-18页圆的面积

  【教学目标】

  知识与技能:

  (1)、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  (2)、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  过程与方法:

  通过割补、拼组的方法探究圆面积的计算方法。

  情感、态度与价值观:

  在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  【教学重点】经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  【教学难点】理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。

  【教具准备】PPT课件,圆公式推导演示器。

  【学具准备】等分好的圆形纸片。

  【教学时间】一课时。

  【教学过程】

  一、基本训练。

  1、复习圆的有关知识。

  2、复习圆周长的计算公式。

  二、问题情境。

  课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

  学生观察并讨论,然后指名回答。

  预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。

  预设2:这个圆形的半径就是绳子的距离,也就是5米。

  预设3:这个圆形的中心就是木桩所在的地方。

  师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

  羊能吃到草的最大范围就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)

  三、建立模型。

  1、认识圆的面积

  师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

  出示结语:圆所占平面的大小叫做圆的面积

  [设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]

  2、估算圆的面积

  (1)、投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  (2)、指明反馈估算结果,并说明估算方法及依据。

  ①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;

  ②、我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  [设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]

  3、积极动脑,讨论推导方法。

  回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的? ——引导转化

  [设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]

  4、小组合作,推导公式

  师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

  (1)、操作感知。

  操作活动一:

  让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)

  问题:拼成后像什么图像?

  ②、操作活动二:

  让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)

  (2)、讨论、交流。

  通过剪拼,你发现了什么?(把圆等分的份数越多,拼成的图形越接近平行四边形或长方形。)

  (3)、推导圆的面积计算公式。

  学生讨论并回答:(课件演示推导过程)

  5、应用圆的面积公式解决问题。(解决情景图中的问题)

  [设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]

  四、解释应用。

  1、口答:(出示课件:)

  2、计算下面圆的面积。(出示课件)

  3、列式计算。

  (1)半径2米的圆的面积是多少平方米?

  (2)直径2米的圆的面积是多少平方米?

  [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  五、回顾小结。

  本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?

  作业布置和板书设计(略)

圆的面积教学设计9

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教学设计10

  教学目标:

  1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

  教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

  教学难点:理解圆的`面积公式的推导过程。

  教学准备:课件、圆形白纸、剪刀。

  教学过程

  一、创设情景,引入新课

  1、出示主题情景图:

  ①从图中你获得哪些数学信息?

  ②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?

  2、说一说:什么叫圆的面积?

  3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

  【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

  二、合作交流,探索新知

  1、回顾旧知:

  回顾以前学过的平面图形面积公式是如何推导出来的?

  指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

  【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

  2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

  3、合作探究:

  (1)猜想

  (2)动手操作,验证猜想。

  (3)汇报交流,展示成果(分层展示学生研究成果)。

  【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  4、借助网络画板制作的动态课件展示圆面积的推导过程。

  展示不同的等份数拼成不同的平行四边形,感受极限的思想。

  【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

  5、推导圆面积公式。

  ①比较转化后的图形与圆,你发现了什么?

  ②全班交流,根据学生叙述板书:

  长方形面积= 长 × 宽

  圆的面积 =圆周长的一半 × 半径

  =Лr × r

  =Лr

  6、小结:圆的面积计算公式: S =Лr

  【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

  7、知识应用、内化提高

  (1)、 求下列圆的面积。(只列式不计算)

  r=3cm

  (2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

  (1) 认真读题,理解题意。

  (2) 你认为怎样解决这个问题?

  (3) 学生尝试独立计算。

  (4) 汇报解答过程及结果,集体评价。

  【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

  四.联系生活、拓展延伸

  1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

  2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?

  3、求下列圆的周长和面积。

  r=2cm

  4、求半圆的面积。

  r=4cm

  【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

  5、回顾整理,全课总结

  今天我们学到了哪些新知识?你有哪些收获?

  【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

圆的面积教学设计11

  【教学内容】:

  义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

  【教学目标】:

  知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

  过程与方法:

  (1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

  (2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

  情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

  【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

  【教具准备】:

  多媒体课件,圆片等。

  【教学方法】:自主探究法

  【教学过程】:

  一.以旧引新、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下三角形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

  二、动手实践、探索新知

  1、补充感知、理解意义

  (1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

  (2)同学们再用手指一指自己带来的圆的面积。

  (3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

  2、比较猜测、探明方向

  (1)提问:猜猜圆面积的大小与什么有关?

  (2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

  (3)活动要求:折一折手中的圆片能折出什么图形?

  (4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

  ①圆和(近似的)长方形有什么关系?(形状变,面积相等)

  ②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

  (教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

  把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

  小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

  3、圆的面积计算公式的推导。

  小组合作讨论以下问题:

  a、拼成的近似长方形的面积和圆的面积有什么关系?

  b、长方形的长与圆的周长有什么关系?

  c、长方形的宽与圆的半径有什么关系?

  d、你能找出圆的面积计算方法吗?

  长方形的面积=长×宽,

  所以圆的面积=()×()=()

  学生在小组内积极讨论,探究、分析,并将结果汇报。

  长方形的长是圆周长的一半,长方形的宽是半径(r)

  因为长方形的面积=长×宽

  所以圆的面积=∏r×r=r2

  齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

  同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

  三、巩固运用、形成技能

  1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

  2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

  (1)课件出示例1

  (2)学生独立审题

  (3)教师板演解答过程.

  3、求下面圆的面积r=3md=5cm

  ①学生独立完成

  ②集体核对时,强调要先算平方再算乘法。

  4、判断题(课件出示)

  5、拓展练习:机动题

  小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

  四、课堂总结、深化认知:这节课,你有哪些收获?

  五、作业:练习十六2.4题.

  附:板书

  圆的面积

  长方形面积=长×宽

  ↓↓↓

  圆的面积=圆周长的一半×半径

  =∏r×r

  =∏r2

  例1:r:20÷2=10(m)

  S:3.14×102=314(m2)

  答:它的面积是314m2。

圆的面积教学设计12

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不同

  本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该一上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教学设计13

  一、教材分析

  《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。

  二、学情分析

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  三、教学目标(课件)

  (1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。

  (2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。

  (3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。

  基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。

  教学难点:是圆面积计算公式的推导和极限思想的渗透;

  四、学情分析

  为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:

  1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。

  2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。

  3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。

  4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

  五、教学过程

  本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。

  (一)创设情境,激趣引入

  数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。

  (二)引导探究,构建模型

  第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:

  第一步:启发猜想,明确方向。

  鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。

  第二步:化曲为直,扫清障碍。

  首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。

  第三步:实验探究,推导公式。

  首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。

  第四步:展示成果,体验成功。

  在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。

  (课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。

  第五步:首尾呼应,巩固新知

  在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。

  四、分层训练,拓展思维

  为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。

  第一层:基本性练习

  1、求下面各个圆的面积。(课件出示)

  (1)半径为3分米;

  (2)直径为10米。

  (3)周长为13厘米。

  第二层:综合性练习

  2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?

  第三层:发展性练习

  3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?

  4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。

  (1)这个龙头最多可喷灌多大面积的草坪?

  (2)喷灌后至少可剩下的面积有多大?

  六、评价和反思

  这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。

圆的面积教学设计14

  一、教学目标:

  1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

  二、教学重点:

  圆的面积公式的推导及应用公式计算。

  三、教学难点:

  圆面积公式的推导。

  四、教学关键:

  转化前后各部分间的对应关系。

  教学过程

  一、导入新课:

  提出问题:

  在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?

  请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)

  思考:

  要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)

  生读,教师板书:圆的面积

  大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?

  二、探索新知:

  (一)、先自学课本,小组探讨如下两个问题:(电脑出示)

  1、在推导的过程中你发现圆的什么变了?(板书:形状)

  2、在推导的过程中你发现圆的什么没变?(板书;面积)

  (二)、探讨第一问:

  A:多媒体出示16等份圆。

  1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。

  2、学生小组操作。

  3、你会把它变成一个近似长方形吗?学生小组尝试操作。

  4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。

  5、学生展示操作成果。

  B:多媒体出示8等份圆。

  1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?

  2、学生汇报讨论结果。

  3、媒体演示8等份。

  C:多媒体出示32等份

  1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。

  2、眼睛微闭想一想。

  3、媒体演示32等份。

  D:多媒体演示三幅图综合画面。

  1、让学生仔细观察后问:哪一等份更接近长方形?

  2、为什么,等份的份数越多就能拼出越接近的长方形。

  F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想

  学生讨论。

  (三)探讨第二问:

  A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?

  2、长方形的面积就是谁的面积?(教师板书)

  3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)

  板书:长方形面积=长×宽

  圆的面积=圆周长的一半×半径

  B:仔细观察多媒体演示问:

  1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  C:推导出圆的面积并且用字母表示。(教师板书)

  D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?

  三:课堂练习

  1、同座互增一个画好半径的圆,求其面积。

  问:先要知道什么条件,再怎样求?

  2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?

  3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何

  解决此问题?

  4、根据下面条件,求出各圆的面积。

  C=6。28米r=1分米d=20毫米

  5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。

  课堂延伸

  学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?

  练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。

  四、课堂小结

  通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?

圆的面积教学设计15

  “圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

  圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:

  1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

  2.通过教学培养学生初步的空间观念。

  3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

  本节课分四个环节来设计教学。

  第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

  第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

  (一)公式的推导

  1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

  2.推导圆面积公式

  第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

  第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。

  第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

  3.小结

  让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

  4.阶段性练习

  a.看标有半径的圆,求面积。

  b.已知半径求面积。(练习时交待运算顺序。)

  (二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

  第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

  第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

【圆的面积教学设计】相关文章:

圆的面积的教学设计03-09

关于圆的面积教学课件09-30

最新圆的面积教学课件09-24

《圆的面积》教学反思范文(精选11篇)12-26

【热门】圆的面积教案三篇03-22

圆的面积教案范文五篇03-29

【推荐】圆的面积教案四篇03-27

《认识面积》优秀教学设计模板12-28

圆的周长教学设计(15篇)03-04

圆的周长教学设计15篇03-04