《小数的意义》教学设计

时间:2024-03-25 18:45:10 艺诗 教学设计 我要投稿

《小数的意义》教学设计(通用15篇)

  作为一位无私奉献的人民教师,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么写教学设计需要注意哪些问题呢?下面是小编整理的《小数的意义》教学设计,希望能够帮助到大家。

《小数的意义》教学设计(通用15篇)

  《小数的意义》教学设计 1

  教学内容:

  国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。

  教学目标:

  1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。

  教学重点:

  理解小数的意义。

  教学过程:

  一、交流信息,引入课题

  1、在三年级时,我们认识了一些小数,你能说出几个吗?

  2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?

  (1)一块橡皮0.6元,一本练习本0.75元。

  (2)一张信封0.05元。

  (3)王琳的身高1.42米,体重32.5千克。

  (4)刘翔在国际田径超级大奖赛中,以12.88秒的成绩刷新世界记录。

  (5)一枚1分硬币的厚度大约是0.001米。

  (6)人体的正常体温是36.5°C-37.5°C。

  (7)“神舟六号”在太空飞行时距地球表面最远的高度大约是344.725千米。

  3、引入课题

  这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?

  根据学生提出的问题揭示课题。

  二、探究新知

  1、学习小数的读法

  小数怎么读?谁能把信息中的几个小数再读一读?

  能发现小数是怎么读的吗?

  让学生发现:小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。

  出示几个小数,让学生读一读:0.390.1080.0060.80

  2、探究小数的意义和写法

  (1)如信息中的0.6、0.75、0.05元这些小数是怎么来的?

  小组内回忆6角写成0.6元的过程。

  那5分为什么可以写成0.05元?同桌商量商量。

  引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成0.01元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?

  学生尝试说说7角5分转化为0.75元的过程。

  那6角8分可以写成几元?

  (2)0.01米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)

  引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是0.01米。

  以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。

  组织交流。

  (3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?

  把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。

  组织全班交流。

  3、抽象概括:仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。

  引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?

  4、教学“试一试”

  先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。

  三、练习拓展

  1、把听到的小数记录下来。

  早晨6点30分,小明从1.2米宽的小床上起来,挤了0.008米长的一段牙膏,用了0.05小时刷牙洗脸,喝了一杯0.243升的牛奶,吃了一只面包,背起2.5千克的书包,飞快地向离家1.46千米的学校跑去。

  指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。

  2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)

  铅笔3角小刀8分直尺5角9分练习本76/100元

  3、把你认为长度相同的找出来

  4毫米0.004米4/1000米0.04米4厘米4分米4/10米

  4、估价:一筒薯片的价格在5元~6元之间。

  5、把课前收集的小数信息,挑一

  个用今天学到的知识介绍给同桌听。

  四、课堂小结

  今天,我们进一步认识了小数,你有哪些收获?

  在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。

  反思:

  我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。

  1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的.经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。

  2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成0.6元后,让学生在小组里商量商量5分为什么可以写成0.05元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。

  3、在解决实际问题中巩固知识,让学生感受数学的魅力。本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。

  《小数的意义》教学设计 2

  (一)教学目标:

  1.知识技能目标:通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。

  2.过程与方法:培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。

  3.情感态度价值观:使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。

  (二)教学重点、难点:

  帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点也是本课的教学难点。

  (三)教学时间:

  1课时。

  (四)教学准备:

  1.多媒体。

  2.课业本。

  (五)教学过程:

  一、创设情境,激发兴趣,揭示课题。

  1.引入:开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮0.3元,新华字典48元,信封0.05元,水彩笔32元,本子0.46元,文具盒10.9元)

  2.走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?

  学生介绍。

  可能说出:0.3元3角

  0.05元5分

  0.46元4角6分

  10.9元10元9角

  3.你能把这些商品价格分分类吗?并说说你是怎样想的?

  学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;0.3元、0.05元、0.46元、10.9元分为一类,这些都是小数。

  4.生活中,你在哪里见到过小数?

  学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:1.3米,视力表1.5,瓶子上1.5升……,同时配合板书。

  5.教师小结:原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。

  (板书课题:认识小数)

  二、引导学生感知小数的含义。

  1.小数的读法。

  (1)(cai只剩下小数的价格)请生读一读这些小数。

  (2)师:这些小数你们都会读了,我写一个你们会读吗?

  师写:48.48,请生读。师:

  这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?

  (3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。

  (4)读一读:100.04。

  2.认识两位小数表示百分之几。

  (1)一位小数与十分之几。

  ①师:1角是1元的几分之一?是几分之一元?你是怎么想的?

  生:1元=10角,0.1元是1角,0.1元=元。

  师配合板书:1元=10角0.1元(1角)=元

  ②师:那么0.3元是几分之几元呢?

  生可能回答:0.1元是元,0.3元是元。

  师配合板书:0.3元(3角)=元

  ③师:你说一个一位小数的价格,并请同学说说它是几分之几元?

  汇报:男女生对出题,互相做答。

  (2)两位小数与百分之几。

  ①师:0.05元是几分之几元?

  生独立思考后汇报,老师配合完成板书:

  1元=100分0.01元(1分)=元

  0.05元(5分)=元

  ②师:0.06元是几分之几元?

  同桌互说后请一生汇报。

  ③师:(将0.06改为0.46)0.46元是几分之几元?你会说吗?

  师配合回答完成板书:46分=元=0.46元

  ④师:你出一个两位小数的价格,请同桌说出它是几分之几?

  同桌互说后,请一组汇报,并板书记录。

  (3)练一练第1题的第(1)小题。

  ①出题后生独立思考。

  ②请生汇报。

  3.试一试。

  (1)(cai出示尺子,并指着1厘米处)

  ①这是多长?

  学生可能回答:1厘米。

  ②师:如果用“米”作单位,你能说出它的长度吗?

  学生汇报,师配合板书:

  1米=100厘米1厘米=米=0.01米

  (2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?

  (3)在书上完成试一试的题目。生汇报,进行核对。

  (4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?

  4.读一读黑板上的分数与小数。

  三、帮助学生抽象出小数的意义。

  1.例2。

  (1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。

  (cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。

  (cai出示第3幅图)涂色部分占整体的'几分之几?学生回答:涂色部分占整体的。

  (2)写成小数是(),写成小数是()。

  (3)能分别说出空白部分用分数和小数怎样表示吗?

  学生汇报。

  2.试一试。

  (1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”

  (2)比较上面每组的分数和小数,你能发现什么?

  学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。

  (4)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。

  再请学生说说改写的方法。

  (5)出示:写成小数是多少?呢?你能写一写,读一读吗?

  为什么在小数点后添“0”?

  (6)请学生汇报改写的方法。

  (7)板书:分数小数

  十分之几一位

  百分之几两位

  千分之几三位

  四、巩固练习。

  1.p32练习五1

  2.p32练习五2

  (1)出示后请生读一读这些小数,后独立完成是课业本上。

  (2)说一说,分母各是多少?

  3.p32练习五3

  (1)完成在课业本上。

  (2)说出各是几位小数。

  4.p32练习五4

  (1)想一想,用几位小数表示。

  (2)口答第2行的结果,第1行写在课业本上。

  为什么在小数点与“2”点添“0”?

  5.p32练习五5

  (1)一生读题。

  (2)同桌互相说一说。

  (3)请一生汇报。

  五、总结。

  1.今天的课上你学会了什么?

  2.在学习中得到哪些经验?

  《小数的意义》教学设计 3

  教学目标

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。

  教学重点:

  理解小数的意义。

  教学过程

  一、交流信息,引入课题

  师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?

  小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)

  【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】

  二、教学例1,初步感知

  师:为了便于研究,老师课前也收集了一些与小数有关的材料。

  1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?

  生1:0.3元就付3角。

  师:很好,你会把元转化成角来考虑。那0.05元和0.48元呢?

  生2:0.05元就是5分。

  生3:0.48元就是4角8分。

  帅:对,也可以说成48分。

  2.师:把3角写成用元做单位的分数,是多少呢?

  生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)

  师:3角=3/10元,也可以写成0.3元,读作零点三元。(板书)

  师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。

  生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)

  师:5/100元还可以写成小数0.05元,读作零点零五;48/100元还可以写成小数0.48元,读作零点四八。(继续板书读写)

  小结:0.3、0.05、0.48都是小数,0.3的小数部分有位,是一位小数,0.05和0.48小数部分有两位,是两位小数,当然,还有三位小数、四位小数

  【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用0.3元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出0.3元=3角3/10元,即0.3=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像0.3这样的小数,再教给读法】

  三、教学例2,揭示意义

  1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成0.01米。(板书:1厘米=1/100米=0.01米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?

  学生尝试完成。

  师:请位同学来说一说,你是怎么填的?

  板书:1厘米=1/100米=0.01米

  4厘米=4/100米=0.04米

  9厘米=9/100米=0.09米

  师小结:请大家仔细观察一下,0.01、0.04和0.09都是两位小数。那前面对应的这排分数有什么共同之处呢?

  生:都是分母为100的分数。

  师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?

  2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成0.001米。(板书1厘米=1/1000米=0.001米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。

  板书:1毫米=1/1000面米=0.001米

  7毫米=7/1000米=0.007米

  9毫米=9/1000米=0.009米

  小结:请大家观察这一行分数和对应的小数,你有什么发现?

  教学设计二

  生:分母是1000的分数可以用三位小数表示。

  3.总的观察:三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数0.3呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?

  生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)

  师:我们再从右往左看,0.3表示3/10,0.05表示5/100,0.48表示48/100,0.001表示1/1000,0.004表示4/1000你有什么发现?

  生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师(指着省略号):四位小数呢?(表示万分之几)

  【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】

  四、练习拓展,巩固提升

  (一)说说做做这个练习分4个层次进行。

  1.师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?

  7/1033/1009/1000

  0.70.330.009

  选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。

  2.师:阴影部分是0.7,淮能用小数表示出空白部分?它又表示什么意义?

  3.出示空白图形和0.9、0.07、0.52这三个分数,分别动手涂色表示出这三个小数。

  4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。

  【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。第一层次是对教材目标的基本达成;第二层次是对习题的进一步开发,渗透辩证统一思想;第三层次培养逆向思维能力;第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的'理解也就从画出来想出来说出来,逐渐明了】

  (二)快速抢答。练一练1、2和书上练习第4题。

  (三)我说你写。老帅报几个小数,看谁能又快又好地记下来。

  0.390.60.1080.0080.80.80

  问座位互相检查一下,写的对不对?

  (此时有同学争论:0.8和0.80,是不是老师重复报了个?)

  师(故意):大家争论什么?你为什么这样想?

  生1:我认为0.8和0.80一样大,所以是重复写了;

  师:0.8表示什么:意义?0.80又表示什么意义?

  生2:0.8表示十分之八,是把1平均分成100份,取其中8份,00.8表示一百分之八十,是把1平均分成100份,取其中80份。

  师指出:0.80很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)

  (四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。

  小刀3角擦皮8分直尺5角9分

  (五)开放题:把6毫米用小数表示出来,你有几种方法?

  (六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?

  生:2米26。(板书2米26)

  师:2米26是口头话,用规范的数学语言,应该说成多少米?(2.26米)你的身高是多少米?猜猜老师的身高。(1.63米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。

  【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,0.8和0.08的比较,6毫米的三种表示方法,以及姚明身高2.26米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】

  《小数的意义》教学设计 4

  教学内容:

  本节课教学内容是新人教版本四年级下册第四单元P32页。

  一、教材分析

  教学主要内容:

  一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10。

  教材编写特点:

  简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

  教学的重点、难点:

  理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

  教学关键:

  理解一位、两位、三位小数的意义。

  基本活动经验:

  在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

  二、学情分析

  小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

  学生学习该内容可能的困难:

  教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

  学习方式:

  充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

  3、教学目标

  知识与技能

  1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

  2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。知道相邻两个计数单位间的进率是10。

  过程与方法

  充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

  情感态度与价值观

  培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

  4、教学过程

  1、已知导入、情境感知

  师:(出示教室场景图)同学们看,这个地方熟悉吗?

  生:熟悉

  师:是哪?

  生:我们的教室

  师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

  师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?

  生:我知道了,讲台的长度、课桌的长度有1米多。

  生:我知道讲台的长度跟1米差不多。

  生:可以用重叠法

  生:可以把黑板的高度那里,对直画一根虚线下来,再看

  师:课桌的长度是1米多,具体多多少呢?你有办法吗?

  2、展开,认识一位小数的意义

  生:先测量出1米,多余的部分截取下来,再接着去测量。

  师:谁还来说说。

  生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

  师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

  生:是的。

  师:接下来,谁有办法?

  生:用多余部分去比,看看1米里面有几个那么长。

  生:将1米平均分成10份,再比较。

  师:比不出来啊,谁有办法?

  生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

  师:是这样的吗?(课件演示)

  生:是的

  师:我们一起来数数

  生:1个,2个,3个,正好10个这么长是1米。

  (在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

  师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

  生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

  生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

  生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

  师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

  师:这就是我们这节课要研究的“小数的意义”(板书课题)

  师:那你们知道小数0.1的意义了吗?

  生:0.1表示的是十分之一。

  师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

  生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

  师:那0.3里面有几个0.1呢?表示什么

  生:0.3里面有3个0.表示十分之三。

  师:还找到了其他的小数吗?

  生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

  师:那1米里面有多少个0.1呢?

  生:1米里面有10个0.1米

  师:10个0.1是1

  仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

  生:这些小数都表示十分之几。

  生:这些分数的分母都是10,小数都是一位小数

  生:分母是10的分数可以写成一起小数

  生:10个0.1是1

  师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

  我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

  师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

  (出示数轴图)你能在这里找到小数吗?

  生:能(学生上台寻找并说明理由。)

  师:为什么是这里呢?

  生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

  生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3。

  师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

  师:那你能找到0.8吗?

  生:某一个点,某一个范围(指出0.8的具体位置)

  师:你是怎么找到0.8的?

  生:数8个0.1(10份中数出其中的.8份)

  生:从1开始往左边数2个0.1(10-2=8)

  师:那数轴上还有其他的小数吗?

  生:有,学生说小数

  师:如果将数轴无限的延长,这样的小数说得完吗?

  生:说不完。

  师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

  3、推进,认识两位小数的意义

  师:课桌的长度已经具体的表示出来了,黑板的高度呢?

  生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

  师:遇到了什么问题?

  生:测量时,多余的部分不够1米,生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

  师:那怎么办?

  生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

  师:(课件演示)我们发现。

  生:我们发现10个紫色部分的长度就是蓝色部分

  生:把蓝色部分平均分成10份,紫色部分是其中的1份

  生:是1厘米

  师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

  生:有100个这样的紫色部分。

  师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示

  生:还可以用0.01米表示。

  师:对的,1/100米写成小数是0.01米。

  师:那红色部分有多少个0.01米蓝色部分呢?

  生:1米里面有100个0.01米。1分米里面有10个0.01米

  师:那这样的4份呢?可以怎么表示?

  生:4/100米,写成小数0.04米

  师:请同学们拿出抽屉中的软尺。

  师:这根软尺长度是多少?

  生:1米、10分米、100厘米、1000毫米。

  师:看来长度单位的换算学的很好哦。

  操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

  学生汇报

  生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

  生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

  生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

  师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?

  生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

  生:它们表示的长度是一样的,但是它们表示的意义是不同的。

  师:仔细观察这些小数,你又有什么发现呢?

  生:这些分数的分母都是100,小数都是两位小数

  生:分母是100的分数可以写成两位小数

  生:100个0.01是1

  师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

  (课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

  师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

  4、拓展,认识三位小数、四位小数的意义

  师:(出示课件显示1毫米)这是多长?

  生:1毫米

  师:你是怎么知道的?

  生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

  师:1米里面有多少个这样的1毫米呢?

  生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

  出示课件

  师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

  生:1/1000米,0.001米。

  师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

  师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

  生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

  生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

  生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

  师:也就是说10个0.001等于1个0.01。

  师:观察这些小数,你发现了什么

  生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

  五、总结及应用

  (观察板书可以知道)

  分母是10.100.1000……的分数可以用小数表示。

  小数的计数单位是十分之一、百分之一、千分之一……写作0.1、0.01、0.001……

  每相邻两个计数单位之间的进率是( 10 )

  生:因为我们刚刚在黑板上标记了

  生:进率是100

  生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10

  生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.

  (学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

  写出合适的分数和小数

  说一说你的收获

  生:我知道了“小数的意义”

  生:我知道了分母是10.100.1000……这样的分数可以写成小数

  生:我知道了小数的计数单位

  是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

  板书设计

  1米 1 计数单位

  1/10米=0.1米 十分之一 0.1 一位小数

  1/100米=0.01米 百分之一 0.01 两位小数

  1/1000米=0.001米 千分之一 0.001 三位小数

  1/10000米=0.0001米 万分之一 0.0001 四位小数

  五、教学反思

  《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。

  一、运用多种手段,提高教学实效

  本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。

  2、情景导入,回到最初

  借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。

  3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。

  许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。

  六、案例研讨

  《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。

  1、回归本质,回到最初

  在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。

  2、数与型结合,便于学生理解

  两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。

  3、概念性的教学是否可以全面放开,让学生自己去发现、去总结

  既然是教学,肯定会有不完美的地方,概念性质的教学多数都是教师满堂灌的形式。在主张把课堂还给学生的情况下,能否大胆的放手,让学生自己去发现、去找凭找据、去总结、去运用呢?

  附:评课老师简介

  何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。

  《小数的意义》教学设计 5

  教学内容:

  人教版义务教育课程标准实验教科书数学四年级下册第50-51页。

  教学目标:

  1、理解小数的产生和意义,认识小数的计数单位及进率。

  2、通过抽象概括,培养学生初步的逻辑思维能力。

  3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。

  教学重、难点:

  教学重点:概括小数的意义,认识其计数单位和进率。

  教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。

  课前准备:请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。

  教学过程:

  一、导入

  1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?

  2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。

  3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。

  二、新授

  1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)

  那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)

  归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)

  2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)

  启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的数据写成以米为单位的小数,同桌互相检查评改)

  归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)

  3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的第一、第二、第三位上。各表示几个1/1000米呢?

  引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)

  (布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)

  4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。

  5、归纳概括。用投影仪显示下列问题。

  在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?

  表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?

  像这种分母是10、100、1000……且相邻的计数单位的`进率是10的分数,可以怎样依照整数的写法写成小数?

  因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。

  小数的 计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)

  6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?

  三、全课总结、质疑

  四、巩固练习

  1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的小数是多少?

  2、口答:判断对错,错的要订正。

  (1)11/1000写成小数是0.011米。

  (2)0.18是18个0.1。

  (3)0.33的计数单位是百分之一。

  (4)0.57表示百分之五十七。

  3、抢答。(看到小数答相等的分数,看到分数答相等的小数)

  0.5 16/100 0.25 4/1000 0.075

  4、书面作业。(略)

  5、机动题:在下面的○里填上“>”、“<”或“=”。

  8/10○0.08 96/100○0.95

  4角○0.4元

  6、思考题:113毫米、15厘米用小数表示出来是多少米?

  [评析:小数的意义是本节课的教学重点,由于小学生的年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:

  1、充分感知,使学生明确小数的产生源于实践。

  认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。

  2、凭借表象。展开联想推理。

  建立表象后,以表象为依托,通过观察米尺,联系 旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。

  3、培养学生抽象概括的能力。建立新的认知结构。

  教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:

  (1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;

  (2)通过小数的特征,建立抽象的概念——小数的意义;

  (3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。

  然后教师设疑:

  (1)能直接写成小数的分数,它的分母是多少?

  (2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?

  (3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?

  (4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。

  4、把握训练内容,巩固强化新知。

  练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运 作,从而有效地培养了学生良好的学习习惯。

  同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。

  《小数的意义》教学设计 6

  教学设想:

  小数的意义是西师版教材四年级下册的内容。本节内容是学生在三年级下册学习“小数的初步认识”的基础上来学习的,同时小数的意义是学生系统学习小数知识的开始,是学生认数范围的一次扩充,也是对学生日常经验的一个归纳与总结。依据新课程理念,我在本节教学设计中力求让学生结合现实情境,进一步认识小数,充分调动学生的旧知,促进知识的正迁移,同时加强操作活动,引导学生主动获取知识。

  教学目标:

  1、让学生理解和掌握小数的意义,以及小数的计数单位,理解相邻两个计数单位的进率是十进关系。

  2、让学生经历观察、操作、探索等活动,理解小数的意义以及数的计数单位,培养学生动手能力、推理能力和创新意识。

  3、让学生感受数学与生活的密切联系,激发学生的求知欲。

  教学重难点:

  重点:理解一位小数,二位小数的意义。

  难点:理解三位小数的意义,同时归纳小数的意义。

  教学具准备:

  课件、学习卡2张、米尺、皮尺

  教学过程:

  一、创设情景,引入新知

  师:孩子们,北京奥运会的脚步离我们越来越近了,全国各地都在积极迎接奥运的到来,我们学校为了迎接奥运也举办了一场校动会。(课件出示,主题图)

  师:你们从这幅图上了解了哪些信息?

  生:张兵跳远的成绩是2.36米

  生:王志跳高的成绩是0.92米

  生:校运会60米的`纪录是7.8秒,100M的纪录是13.4秒,跳远的纪录是2.87M,跳高的纪录是1.06M。

  生:我知道这些数都是小数。

  师:孩子们真聪明,观察真仔细.那么你们想知道为什么会产生小数吗?

  生:想

  师:现在我想让两位孩子来量一量黑板的长和宽。

  学生上台用皮尺测量。

  生:黑板长3米10厘米

  生:黑板宽95厘米

  师:孩子们黑板的长和宽是不是都是整数呢?

  生:不是

  师:在测量的计算中,我们有时不能得到整数的结果,通常可以用小数表示。板书:小数

  师:孩子们,我们在三年级时都已经初步认识了小数,那么下面这些空我相信大家都能填出来吧!(课件出示)

  1角=()10元=()元0.1元是把1元平均分成10份,取其中()份。

  1dm=()10米=()m0.1米是把1米平均分成()份,取其中()份

  5角=()()元=()元0.5元是把1元平均分成()份,取其中()份

  3dm=()()m=()m0.3是把()平均分成()份,取其中()份

  (生独立完成,并汇报)

  二、探索新知

  师:孩子们完成的真不错,来鼓励一下自己。好!现在请大家拿出老师课前发给你们每个小组(二人一组)的学习卡片1,然后听清老师讲要求。(课件出示)

  (1)、涂一涂:用斜线把其中十个直条涂出阴影,并用分数、小数表示,再把7个直条涂上阴影,用分数小数表示。

  (2)、填一填:

  分数()10

  分数()10小数()

  小数()

  (3)、说一说:0.7表示把一个正方形平均分成()份,取其中()份

  0.7里面有()个0.1

  0.1、0.7都是一位小数,都表示把1个整体平均分成()份,分别取其中的()份,()份。

  (4)、讨论:一位小数表示几分之几?几分之几表示一位小数?

  (5)、完成后,组内两个同学相互说一说

  (学生两人一组合作完成)

  师:好!孩子们我看大家完成的差不多了,谁来给大家汇报一下?

  生:(上台用视频展示台把学习卡1展示)我们小组是这样涂的

  分数110分数710

  小数(0.1)小数(0.7)

  0.7表示把一个正文形平均分成(10)份,取其中(7)份。0.7里面有(7)个0.1

  《小数的意义》教学设计 7

  教学目标

  (一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。

  (二)通过对算理的理解,培养逻辑思维能力,提高计算能力。

  教学重点和难点

  重点:理解并掌握除数是整数的小数除法的计算方法。

  难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。

  教学过程设计

  (一)复习准备

  1.填空:

  (1)0.32里面含有32个( );

  (2)1.2里面含有12个( );

  (3)0.25里面含有( )个百分之一;

  (4)2.4里面含有( )个十分之一;

  (5)8里面含有( )个十分之一;

  (6)0.15里面有( )个千分之一。

  2.列竖式计算:

  把2145平均分成15份,每份是多少?

  2145÷15=143

  3.复习整数除法的意义。

  (1)一筒奶粉500克,3筒奶粉多少克?

  (2)3筒奶粉1500克,1筒奶粉多少克?

  (3)1筒奶粉500克,几筒奶粉1500克?

  学生列式计算:

  (1)500×3=1500(克);

  (2)1500÷3=500(克);

  (3)1500÷500=3(筒)。

  比较两个除法算式与乘法算式的关系,说出整数除法的意义:

  已知两个因数的积与其中的一个因数,求另一个因数的运算。

  (二)学习新课

  1.理解小数除法的意义。

  将上面三题中的单位名称“克”改为“千克”:

  (1)1筒奶粉0.5千克,3筒奶粉多少千克?

  (2)3筒奶粉1.5千克,1筒奶粉多少千克?

  (3)1筒奶粉0.5千克,几筒奶粉1.5千克?

  学生列式计算:

  (1)0.5×3=1.5(千克);

  (2)1.5÷3=0.5(千克);

  (3)1.5÷0.5=3(筒)。

  观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?

  讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。

  练习:P14“做一做”。

  2.研究除数是整数的小数除法的计算方法。

  (1)学习例1:

  服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

  ①学生列式:21.45÷15=

  ②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)

  ③引出问题:被除数是小数,其中的小数点应如何处理呢?

  ④学生试做。

  ⑤学生讲算理。

  针对错例,讨论分析原因;针对正确的重点讲清以下几点:

  21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)

  除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)

  商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)

  (2)练习:P15“做一做”。

  68.8÷4= 85.44÷16=

  学生独立完成后,同桌互相讲算理。

  小结

  思考:商的小数点与什么有关?

  讨论得出:商的小数点要和被除数的小数点对齐。

  (3)学习例2:

  永丰乡原来有拖拉机36台,现在有117台。现在拖拉机的台数是原来的多少倍?

  ①学生列式:117÷36;

  ②学生试做:

  ③117除以36商3余9,能不能作为结果?

  不能作为结果怎么办?(继续除。)

  怎样做才能继续除?(把9个一看成90个十分之一。)

  直接在个位的右边添上0行吗?应该怎样添?(直接在个位的右边添0不行,如果这样9个一就变成了90个一,数的大小发生了变化。为了使数的大小不变,应在个位的右边先点上小数点后,再添上0,使9个一变成了90个十分之一。)

  ④学生继续做完,讲出道理。

  (36除90个十分之一,商2余18。因为商表示2个十分之一,因此在商里3的右边点上小数点。18个十分之一除以36,不够商1个十分之一,再添0,化成180个百分之一,继续除。商5个百分之一,把5写在百分位上。)

  教师指出:像例2这样的小数除法除到最后没有余数就叫除尽了。

  (4)练习:P15“做一做”。

  25.5÷6 86÷16

  学生独立完成后,订正,找出错题,分析原因。

  (5)总结

  思考:今天我们计算的除数是整数的.小数除法与整数除法有哪些相同的地方,哪些不同的地方?

  讨论得出除数是整数的小数除法的计算法则:

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0继续除。

  (三)巩固反馈

  1.写出下列竖式中商的小数点。

  2.把下面的题做完。

  3.课本:P17:1,2。

  4.作业:P17:3,4。

  课堂教学设计说明

  小数除法的意义是以整数除法的意义为基础的。通过改变单位名称把整数乘除法算式改写成小数乘除法算式。引导学生观察比较,使学生顺利理解小数除法的意义与整数除法的意义相同。

  除数是整数的小数除法,在引导学生充分感知的基础上明确算理,在与整数除法的比较中总结出除数是整数的小数除法的计算法则。

  练习中针对重点、难点设计了专项练习,使新知识在学生原有的认知结构中“生根”,使原有的认知结构得到发展。练习过程中重视反馈,抓住学生出现的问题,及时分析、弥补,把问题消灭在课堂上。

  板书设计

  小数除法的意义和除数是整数的小数除法

  例1 21.45÷15

  =1.43(米)

  答:平均每件用布1.43米。

  例2 117÷36

  =3.25(米)

  答:现在拖拉机的台数是原来的3.25倍。

  《小数的意义》教学设计 8

  小数的意义

  第一课时

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。

  4感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学重点:

  结合现实情境,认识小数及小数的计数单位。

  教学难点:

  理解小数的意义及十进关系。

  教学准备:

  米尺、直尺等。

  教学过程:

  一、引入新知

  1量一量黑板的`长,课桌长、高

  这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2回忆、练习

  1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?

  板书课题:小数的意义

  二、探索新知

  1教学例1

  (1)填一填,说一说。

  (出示例1第1个图)

  ①此图用分数、小数该怎样表示?你是怎样想的?

  说一说:07表示把一个正方形平均分成()份,取其中()份。

  07里面有()个0.1。

  ②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(后面两幅图)

  ①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?

  ②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2教学例2

  (认识三位小数)

  (1)看一看,填一填。

  ①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

  1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。

  (第70页例2图)其中1份、25份,107份用分数和小数怎样表示?

  (2)说一说0.025,0.107分别表示什么以及它们的组成。

  (3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?

  3讨论、归纳小数的意义

  学生讨论:什么是小数?小数的计数单位有哪些?

  归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。

  学生自学数位顺序表。

  三、课堂活动

  完成课堂活动第1,3,4题。

  先学生独立完成,集体评议,让学生说说是怎样想的?

  四、课堂小结

  本节课学会了什么?还有什么困难?

  板书设计:

  小数的意义

  一位小数表示十分之几。

  两位小数表示百分之几。

  三位小数表示千分之几。

  每相邻两个计数单位间的进率是“10”。

  0.1,0.01,0.001……就是小数的计数单位。

  《小数的意义》教学设计 9

  【学习内容】

  小数的意义和产生,课本50—51页内容。

  【学习目标】

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  【学习重难点】

  小数的意义和计算单位及进率

  【学习流程】

  一、知识链接

  1/、谈话引入:

  我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

  二、探究新知。

  1、探究活动:

  认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的'产生和意义。

  温馨提示:

  (1)能你测量课桌的长度和宽度吗?测量时发现了什么?

  (2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?

  (3)、你能用小数表示分母是10的分数吗?

  (4)、你能用小数表示分母是100的分数吗?

  (5)、你能用小数表示分母是1000的分数吗?

  (6)、什么是小数,小数的计数单位是什么。

  (7)、每相邻两个计数单位之间的进率是多少。

  (8)、小数的计算单位和分数的计数单位有什么不同之处。

  2、我会总结:

  (1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

  (2)、每相邻两个计数单位之间的进率是()。

  3、解决问题:

  (1)0.457,每个数位上的数各表示几个几分之一?

  (2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()

  三、课堂巩固:

  1、判断:

  (1)0.40里面有4个0.01()(2)35克=0.35千克()

  2、把小数改写成分数

  0.90.090.0359

  3、括号里能填几?你是怎么知道的?

  (1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。

  (3)、找朋友:(用线把上下两组数连起来)

  0.0450.130.00010.9

  四、课堂总结:

  这节课我们学习了什么?你知道了什么?你还有什么问题?

  《小数的意义》教学设计 10

  教学目标:

  1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

  2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

  3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

  学情分析:

  小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。

  教学重点:

  认识小数的'产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

  教学难点:

  理解小数的意义。

  教学过程:

  一、创设情境,了解小数的产生。

  1、回忆一下:我们学过什么长度单位?

  2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

  3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

  4、揭题。(板书:小数的意义)

  二、自主探讨,理解小数的意义。

  (一)研究一位小数

  1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

  这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

  2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

  3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。

  4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

  (二)研究两位小数(自助探究)

  1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

  2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

  3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

  4、说发现。

  (三)研究三位小数。(自主探究)

  1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

  2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

  3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

  4、说发现。

  (四)推导

  1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

  1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

  刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。

  三、合作交流,探讨小数的计数单位。

  1、填一填。

  (1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

  填一填,说说你是怎么想的。

  像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

  同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

  请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

  2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

  0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

  四、巩固练习。

  课件出示练习。

  五、总结。

  这节课你有什么收获?

  《小数的意义》教学设计 11

  一、教学目标

  1、理解小数的意义,能够说出小数各部分的名称。

  2、正确掌握小数的读、写方法。

  3、通过观察、测量体验小数与生活的关系。

  4、在合作与交流中的过程中,感受数学学习的乐趣。

  5、体验数学在身边,感受数学学习的价值和乐趣。

  二、教学重点和难点

  1、认识小数学概念。

  2、小数表示形式。

  3、理解小数的含义是本课的重点、也是难点。

  三、教学过程

  一)创设情景,导入新课

  创设情景,引导学生交流搜集到的生活中的小数。

  教师根据学生回答随机板书:

  1、一张桌子的高度是0.7米;

  2、教室窗户的宽是0.85米;

  3、一份汴梁晚报价格是0.50元

  4、每度电的价格是0.52元。

  5、一棵包菜的重量是0.625千克。

  6、奥运冠军刘翔的身高是1.89米,体重是74.11千克。

  问题思考:为什么在这些地方需要用小数来表示?

  引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。

  问题:

  1、这些都是小数,你知道关于小数的哪些知识呢?

  2、关于小数你还想知道些什么?

  3、今天我们就进一步研究小数的意义。(揭示课题)

  这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  二)新授部分

  0.7米表示什么意义?谁来说说(借助课件,帮助学生理解)

  引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成0.1米。谁也来就像这样完整说一说。

  师:这就是0.7米的意义。对照板书中的分数和小数,你能发现什么?

  学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。

  问题:十分之五等于多少?0.8等于多少?

  我们过去三年级所认识的0.1米、0.2米以及0.7米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?

  每份长1厘米,就是1/100米,还可以写成0.01米.

  问:谁愿意再来说说0.01米的意义。学生完整地说出:

  1米平均分成100份,每份长1厘米,就是1/100米,还可以写成0.01米。

  想一想0.85米表示什么?

  重点让学生自己来说一说。

  观察:对照板书,那么你们又有什么新的发现?

  得到:百分之几可以写成两位小数,两位小数表示百分之几。

  师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?

  你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。

  师:如果将1米平均分成10000份呢?能再举例吗?

  接着学习下面的几个小数:0.50元、0.52元、0.625千克

  把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。

  归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。

  三)练习加强理解

  1、读小数:1.35元0.49米0.98千米0.87千克

  2、1厘米=()/()分米5角=()元

  3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示

  四)教学反思

  1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。

  2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的.读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。

  3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。

  4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。

  5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。

  《小数的意义》教学设计 12

  教学目标:

  1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义,小数的意义教学设计。

  2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。

  3、经历探索小数意义的过程,了解小数在生活中的广泛应用。

  教学重点:

  结合实际操作,使学生理解小数的意义,学会读写小数

  教学难点:

  经历探索小数意义的过程。

  教学准备:

  自制课件正方形纸片、正方体模型

  教学过程:

  一、情景创设

  课件播放歌曲《春天在哪里》

  师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?

  生:春天。

  师:对,春天来了,瞧,(课件展示)花儿绽放了,蝴蝶飞来了,人们也纷纷走到了户外。看,画面上的老太太在读报纸呢,一直蝴蝶从她的身边飞过,它看到了什么呢?

  课件出示:1千瓦时的电可以让电动车运行0.84千米。

  师:谁来读一读这句话。

  生:1千瓦时的`电可以让电动车运行0.84千米。

  师:0.84是个什么数?

  生:小数。

  二、合作探究

  1、教学小数的读写

  师:你还会读其他的小数吗?

  课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。

  教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。

  学生讨论后回答汇报。

  教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。

  师:打搅会读小数了,那你会写小数吗?

  生:会。

  课件出示零点四七四点一三十二点四零五

  学生自由写--交流--集体订正。

  2、教学小数的意义

  师:大家既然都见到过小数,那想一想都是在哪里见到的:

  生举例生活中的小数(超市的货架上、小票上、课本上等等)

  师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?

  生:1角。

  师:说说你的想法。

  生:……

  师出示正方形的纸,然后让学生图出0.1元。

  生操作然后汇报。

  师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。

  师操作让学生回答表示的是多少元。

  师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。

  生操作后汇报

  师:你知道0.01元是多少钱?

  生:1分。

  师:那1元里面有多少个1分呢?

  生:100个。

  师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。

  0.03元呢?0.36元呢。

  让学生用手中的正方形的纸片进行涂写、汇报。

  展示0.25的图片,让学生写小数和分数。

  借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。

  师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。

  三、课题达标

  (课件)展示题目

  采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。

  四、课堂小结

  师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  《小数的意义》教学设计 13

  教学目标:

  1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。

  2、通过小数和分数的联系,培养学生系统归纳知识的能力。

  3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。

  4、通过自学、交流等活动,积累思考的经验和探究的'经验。

  5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

  6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义,培养迁移和类推的能力。

  教学重点:

  1、理解小数的意义

  2、知道每相邻的两个计数单位之间的进率是10。

  教学难点:

  小数每相邻两个计数单位间的进率是10。

  教学过程:

  一、情境引入,揭示课题

  同学们,上学期我们初步认识了小数,了解到小数在生活中具有十分广泛的应用,生活中处处有小数,小数也经常出现在日常生活的测量和计算中。你会用米尺测量吗?请两位同学合作到前面测量黑板的长度。引出在测量过程中,往往不能正好得到整数结果,不够1m怎么办?

  今天我们一起来探究小数的意义(板书:小数的意义)

  二、新授

  (一)1、理解一位小数的意义

  请看大屏幕(出示课件米尺图)

  师:把1米平均分成10份,其中的一份是几分米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?

  师:谁来说一说?3分米呢?7分米呢?

  通过探究,发现:分母是10的分数可以用一位小数表示。

  师:0.3m里面有几个0.1m?

  0.7m里面有几个0.1m?1m呢?

  小结:分母是10的分数,它的分子是几,里面就有几个0.1。

  2、巩固练习(出示课件)

  师:请你再思考一下:1里面有几个0.1?为什么?

  (二)1、理解两位小数的意义

  请看大屏幕(出示课件米尺图)

  把1米平均分成100份,其中的一份是几厘米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?谁来说一说?4厘米呢?8厘米呢?

  通过探究,发现:分母是100的分数可以用两位小数表示。

  0.04m里面有几个0.01m?

  0.08m里面有几个0.01m?1m呢?

  小结:分母是100的分数,它的分子是几,里面就有几个0.01。

  2、巩固练习(出示课件)

  (三)1、理解三位小数的意义

  请看大屏幕(出示课件米尺图)

  把1米平均分成1000份,其中的一份是几毫米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?

  谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?

  学生看课本33页,独立探究。(课件出示问题引导)

  通过探究,发现:分母是1000的分数可以用三位小数表示。

  0.006m里面有几个0.001m?

  0.013m里面有几个0.001m?1m呢?

  小结:分母是1000的分数,它的分子是几,里面就有几个0.001。

  (四)迁移推理

  同学们看课本33页,在米尺图的下面,小精灵说了一句话,我们齐读一下。引导学生理解其中省略号的含义。

  巩固练习:

  1、教材36页 1、2两题

  2、课件出示巩固练习

  (五)认识小数的计数单位和进率

  回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。

  三、课堂总结:

  这节课你有什么收获?

  四、介绍小数的历史,拓展视野

  五、布置作业:教材37页7、8两题。

  《小数的意义》教学设计 14

  教学目标:

  1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。

  2.会进行单名数和复名数单位之间的换算。

  3.体会小数与分数之间的关系,会进行互化。

  4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。

  教学重点:

  通过探索单位换算的过程,进一步体会小数的意义。

  教学难点:

  把单名数化成复名数。

  教学准备:

  多媒体课件。

  课时:

  课时一

  教学过程:

  一、导入:

  师:(课件展示教材第4页上面的图)同学们好,我们一起来看看这位小朋友在做什么?(学生小声议论:可能是在测量黑板的长度吧?)仔细观察一下,你知道这位小朋友量出的黑板长度是多少少吗?

  生:学生边观察边交流。师板书课题。

  设计意图:在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。

  二、探讨与交流:

  1、学生汇报:黑板长2米,又多出36厘米。

  师:这些数有什么地方不一样吗?

  生:数的单位不一样。

  师:单位不同,计量起来不方便,那我们该如何解决这个问题呢?

  生:把这些数据的单位换算成统一的。

  师:你认为换算成哪个单位来计量更合适呢?

  生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。

  师:那我们一起来讨论一下如何用“米”来表示黑板的长度吧。

  2、活动要求:

  (1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。

  (2)汇报结果:鼓励学生用自己的语言说出自己的想法。

  生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。

  师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;

  把1米平均分成100份,1份或几份可以用两位小数表示······

  (1)一位小数表示十分之几;

  (2)两位小数表示百分之几。

  设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。

  三、探讨与延伸

  师:刚才我们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)

  生:可以用克与千克来表示。

  师:称量质量较小的物体一般用克作单位,称量质量较大的物体一般用千克作单位。那么如何用千克来表示鹌鹑蛋和鸵鸟蛋的质量呢?

  生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。

  生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。

  师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。

  设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。

  四、生活与应用:

  师:为了能更好的熟悉低级单位和高级单位数之间的互化,我们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。

  活动要求:

  1、目测估算出的结果要尽可能的接近事实。

  2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。

  3、与其他同学互相交流,选出较为准确的数据,汇报给老师。

  生:(认真估测、交流并汇报)

  设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的数学信息。

  五、巩固练习:

  1、师:我们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)

  学生纷纷举手抢答。师给予评议。

  2、师:(出示课件“练一练”第二题。)同学们知道图片上的'这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。

  六、总结:这节课我们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。

  七、作业:教材第5页第4题。

  八、板书设计:

  36厘米=0.36米

  12克=0.012千克

  500克=0.5千克

  九、后记:

  这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。

  在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。

  《小数的意义》教学设计 15

  教学目标:

  1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

  2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

  3、培养学生的迁移、类推能力,以及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学过程:

  一、情境导入:

  1、(展示一根绳子)猜猜它有多长?

  生猜:1米……

  师:要想知道准确的结果,怎么办?

  生:量一量。

  师:谁愿意来测量一下它的长度?

  两名学生合作测量。

  师:把你们测量的结果汇报一下。

  生:一米。

  师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

  生猜并测量验证。

  师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

  生:不能。

  师:为什么不能用整数了?

  生汇报

  师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

  师:那你们说说在哪些地方还见过小数。

  生汇报

  师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

  二、探索交流,建构新识:

  (一)理解一位小数的意义。

  1.师:请同学们任意说一个小数。

  生汇报师板书

  师:那老师也来写几个。

  0.1 0.01

  师:猜一猜老师接下来会写什么?

  生:0.001

  师:同学们真的是很会推理。

  2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

  生汇报

  师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

  师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

  3.生展示、汇报

  展示若干组学生的画法。

  (编号,让学生说出自己的想法。)

  师:你认为哪位同学表示出了0.1那么大小。

  生:1号;3号;2号;4号。

  师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

  师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

  师:现在我们再来回头看刚才几位同学的作品,哪位同学的.涂色部分表示出了0.1?(生汇报:3号和4号。)

  师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

  师:那现在谁来说说0.1到底表示什么?

  生汇报师小结:说简单点0.1就表示。(板书)

  师:涂色部分为0.1那空白部分用哪个小数表示呢?

  生汇报:0.9。

  师:怎么看出0.9的?

  生汇报

  师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

  生:1

  师:现在我们明白了1里面有(10)个0.1。(板书)

  4.再涂1块能看到哪两个小数?

  生:0.2、0.8。

  师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

  师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

  生:分母都是10、都是十分之几……

  师:那我们就可以说一位小数表示的就是十分之几。(板书)

  (出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

  (二)理解两位小数的意义。

  1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

  同桌交流讨论。

  生汇报:把它平均分成100份,取其中的一份。

  预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

  师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

  师:0.01就表示。还看到了哪个小数?

  生:0.99。

  师:0.99里面有几个0.01。

  生:99个。

  师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

  2.如何表示0.25呢?

  生汇报

  师:还能想到哪个小数?他们的分数朋友分别是谁?

  生:0.75,分数朋友:

  3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  4.师提问:

  (1)你涂了哪个小数?

  生汇报。

  师:猜一猜他涂了几格,还能找到另外一个小数吗?

  (2)你涂了几格?谁能知道他写的是哪个小数?

  5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

  生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

  (三)理解三位小数的意义。

  1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

  师:那它的分数朋友是多少?()

  师:那0.237表示什么?它的分数朋友是谁?

  生:

  师:小数是多少?

  生汇报

  2.师:谁能找一个大一点的三位小数?

  生:0.999 =

  师:要在正方形纸上涂上0.999会有什么感觉?

  生汇报

  如果再涂多少就涂满了?(0.001)

  师:那也就是说(1000)个0.001是1。

  师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

  3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

  师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

  (四)提炼小数意义

  1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

  生汇报

  小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

  2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

  0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

  3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

  三、巩固内化:

  师:今天有关小数的知识大家都学会了吗?那接下来我们做几道题检验一下同学们的学习成果,好不好?

  出示课件练习题。

  1、填一填。

  2、填上合适的数。

  四、回顾反思:

  1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

  2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

  3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

  师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

【《小数的意义》教学设计】相关文章:

小数的意义教学设计06-22

小数的意义教学设计11-18

《小数的意义》教学设计03-29

《小数的意义》教学设计03-29

小数的意义教学设计集锦01-09

小数的意义教学设计【热】01-16

小数的意义教学设计【精】01-13

小数的意义教学设计及课件07-20

精小数的意义教学设计02-28

小数的意义教学设计热12-22