《分数除法》教学设计(精选20篇)
作为一位无私奉献的人民教师,通常需要准备好一份教学设计,借助教学设计可以提高教学效率和教学质量。写教学设计需要注意哪些格式呢?下面是小编精心整理的《分数除法》教学设计,仅供参考,希望能够帮助到大家。
《分数除法》教学设计 1
【教学目标】
1、 结合具体的情景,巩固、掌握有余数除法的计算方法;
2、 通过小组合作探究,理解余数一定比除数小的道理;
3、 初步养成用数学解决实际问题的意识和能力。
【教学重难点】
在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。
【教学过程】
一、 情景感知,适时提问。
1、用竖式计算
(1)57÷9(2)40÷8(3)38÷7(4)24÷6
(请学生独立完成,及时校对)
[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]
2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?
T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))
二、探究发现,试作体验。
1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?
T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))
2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。
T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?
三 合作交流,试说分享。
1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?
T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)
T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)
18÷5=3(组)??3(人)
19÷5=3(组)??4(人)
20÷5=4(组)
T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。
预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,
如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?
(增加花盆的`总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)
21÷5=
22÷5=
23÷5=
24÷5=
25÷5=
2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)
3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。
4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)
16÷4=
17÷4=
18÷4=
19÷4=
四、知识梳理,适时拓展。
1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。
2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。
3、解决问题:十月份有31天,十月份有几个星期?多几天?
4、拓展延伸,完成填一填。
5、同学们,这节课你有什么收获:你体验最深的是什么?
板书设计:
有余数的除法
17÷5=3(组)……2(人)
18÷5=3(组)……3(人)
19÷5=3(组)……4(人)
20÷5=4(组)
余数一定要比除数小。
《分数除法》教学设计 2
教学目标:
知识目标:
体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:
能求一个数的倒数。
教学难点:
分数除以整数计算法则的推导过程。
教学准备:
长方形纸片。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?
②在两道题的`计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?
③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
⑥那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三巩固练习
学生独立完成
四、课堂小结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
板书设计:
分数除以整数
教学反思:
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
《分数除法》教学设计 3
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的'被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2、3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2、3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
《分数除法》教学设计 4
教学目标:
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学过程:
一、复习引入
1.列式,说说数量关系。
小明2小时走了6km,平均每小时走多少千米?
速度=路程÷时间
2.填空。
2/3小时有()个1/3小时,1小时有()个1/3小时。
3.口算,说说分数除以整数的计算方法。
(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2
(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)
4.引入课题。
我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?
今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。
板书课题:一个数除以分数。
二、解决问题,发现算法
1.理解题意,列出算式。
(1)出示例3。
(2)学生读题,理解题意。
(3)列出算式,说出列式根据什么数量关系。
板书:2÷(2/3)(5/6)÷(5/12)
2.探索整数除以分数的计算方法。
(1)2÷(2/3)如何计算呢?让我们画出线段图看看。
(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?
(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)
(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。
(4)根据学生的回答把线段图补充完整,板书计算思路。
先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2
再求3个1/3小时走了多少千米,算式:2×(1/2)×3
(5)找出计算方法。
板书:(乘法结合律)
现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)
启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以
观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?
强调:被除数没有变,除号变乘号,除数变成了它的倒数。
(6)小结:从上面这个推算过程中我们找到了整数除以分数的'计算方法是:整数除以分数等于用整数乘这个分数的倒数。
板书,学生齐读。
3.探索分数除以分数的计算方法。
(1)让学生尝试计算5/6÷5/12。
我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。
(2)学生汇报,教师板书:
(3)为什么写成×(12/5)?
(4)怎样验证这种计算结果是正确的?
学生可能回答:
①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5
再求12个1/12小时走了多少千米,算式是5/6×1/5×12
②用乘法验算。
(5)回答“谁走得快些”。
(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?
让同桌学生相互议一议,再指名回答。
(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?
强调:除以一个不等于0的数。
齐读法则。
三、巩固练习
1.口算。(采用口算对折卡片)
(1)不能约分的2÷3/5=1/3÷2/5=
(2)能约分的3÷3/4=2/7÷6/7=
2.完成课本第31页“做一做”第1题,填在书上。
第2题,写在课堂练习本上,写出过程。
3.直接写出得数。
1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=
四、师生共同小结
1.这节课我们学习了哪些知识?
2.一个数除以分数的计算方法是什么?
五、布置作业(略)
《分数除法》教学设计 5
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、 谈话激趣,复习辅垫
1. 师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
成人的体重× 3 (2 )=成人体内的水分的重量
2. 揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、 引导探究,解决问题
1. 课件出示例题。
2. 合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3. 学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4. 比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5. 对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1) 看作单位“1”的数量相同,数量关系式相同。
(2) 复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知, 可以用方程解答。
(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、 联系实际,巩固提高
1. (投影)看图口头列式,并用一句话概括题中的等量关系。
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了 5 (2 ),修了多少千米?
(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?
②解答分数除法应用题的关键是什么?
③单位“1”是已知的用什么方法解答?单位“1”是未知的`可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
设计意图:
一、从生活入手学数学。
《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、 有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
《分数除法》教学设计 6
教学设想:
1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。
2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。
3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。
教学目标:
1、理解分数与除法的'关系,知道如何用分数表示除法算式的商。
2、培养学生动手操作、合作交流和灵活运用知识的能力。
3、通过学习,培养学生转化的数学思想和勇于探索的精神。
教学重点:
理解分数与除法的关系。
教学难点:
具体体会每一个商的由来和表示的含义。
教学过程:
一、感知关系
1、问题:把6米长的绳子平均分成3段。每段长多少米?
把1米长的绳子平均分成3段。每段长多少米?
提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)
2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?
板书:被除数÷除数=被除数/除数
二、探究关系
1、验证关系
(1)通过动手操作验证
出示实例:把3块饼平均分给4个小朋友,每人分得多少块?
列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)
动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。
同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。
反馈验证
引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。
板书:3÷4=3/4
(2)运用分数意义验证
师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?
出示例[2]:17分是几分之几小时?
引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)
1÷60=1/60 17÷60=17/60(小时)
引导小结:分数与除法之间的关系,还可以用来转化名数。
2、揭示关系
师:通过刚才的验证,你得出了哪些结论?
①两个数相除,当商不是整数时,可以用分数来表示。
②被除数÷除数=被除数/除数。
师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?
联系
区别
除法
被除数
除号
除数
是一种运算
分数
师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b
引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0
三、巩固关系
1、强化分数与除法的关系。
① P.82 2 ②(P.82 4)
③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时
④在括号里填上合适的数
( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )
2、比较练习,完成P.82 3
①学生选择条件,列式解答。
②引导比较:联系—都占总数的1/3,区别—能否用整数表示商
四、总结提升
师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)
质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?
《分数除法》教学设计 7
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把 4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、 创设情境 提出问题
(1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?
(2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】
二、 自主探究 小组交流
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)
自主学习提示
1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2. 同桌之间说一说彼此的想法。
3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。
【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】
三 交流释疑
1、 初步感知分数除法
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
请同学们拿出图
(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)
【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】
2、 初探算法
把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
请大家在图
(二)的上面涂一涂。
交流:(展示学生不同的涂法)
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用 × 1/3?)
观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)
1/3÷5 4/5÷31/3÷5
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)
【设计意图:分数除以整数的`计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】
四、实践应用
1、算一算
9/10÷3015/16÷20xx/15÷21 8/9÷6 5/6÷15
2、填一填
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)
【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】
五、课堂总结
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练
七、板书设计:
分数除法(一)
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2 (2) 4/7÷3
=4 /7×1/2
=2/7
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
《分数除法》教学设计 8
教学目的:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。
教学过程:
一、复习
1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。
1/5、3/4、7/16、9/9
2、口算下面各题。
1/6÷3、4/5÷2、3/8÷6、6/7÷2
提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)
3、解答应用题。
一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)
提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)
指定一名学生列式解答。
二、新课
揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。
1、出示例题。
一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?
指名列出算式,教师板书:18÷。
2、教学整数除以分数的计算方法。
教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。
提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。
提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)
提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)
提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)
提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)
提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的.千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。
提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。
提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:
18÷==45(千米)
写出答案“答:汽车1小时行驶45千米。”
3、引导学生小结。
“整数除以分数,等于整数乘上除数的倒数。”
三、看教科书中新课内容后试算
全体学生独立计算“做一做”中的练习题:
12÷ 24÷
集体订正计算过程及结果,并提问一个数除以分数的法则。
四、课堂练习
在练习本上计算练习八第1、2题,然后订正计算结果。
五、总结
今天学习了什么新知识?
整数除以分数的计算法则是什么?
计算整数除以分数应注意什么?
六、布置作业
1、阅读教科书第28~29页的内容。
2、在练习本上做练习八第3、4题。
《分数除法》教学设计 9
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:
(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
教后反思:
本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的'1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。
《分数除法》教学设计 10
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的.分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
《分数除法》教学设计 11
一、教学内容:
分数与除法,教材第65、66页例1和例2
二、教学目标:
1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:
1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:
圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的.?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
《分数除法》教学设计 12
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:
理解、掌握分数与除法的关系。
教学难点:
理解分数商a/b(b≠0)的意义。
教学具准备:
教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6=64÷5=0。880÷5=16
3÷7=5÷10=0。54÷9=
然后引导学生归纳分类:
36÷6=6和80÷5=16的商为整数;
4÷5=0。8和5÷10=0。5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想
要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,
大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的.食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个4740÷47
饮料39瓶4739÷47
花生8千克478÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2、层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,
即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3、巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
《分数除法》教学设计 13
一、教学目标:
1、通过教学使学生理解分数与除法的关系,并学会用分数表示两个数的商。
2、能在具体情境中利用分数与除法的关系,用分数表示被除数与除数之间的关系。
二、教学重难点:
1、理解分数与除法的关系。
2、能用分数表示被除数比除数大的商并理解其含义。
三、教学过程:
教学设想
学生活动
备注
一、引入
出示三幅图或文字,请学生根据图意列出除法算式,并计算结果。
(1)20个月饼平均分给4人,平均每人可以分到多少?
(2)1个月饼平均分给4人,平均每人可以分到多少?
(3)3个月饼平均分给4人,平均每人可以分到多少?
学生独立尝试并解答。
二、展开
1、请学生分别讲讲每个算式的意义。
配合学生讲解,可出示书本P19图。
着重演示说明3个四分之一是四分之三。
2、请学生再用月饼举例类似的商是分数问题,并思考这些问题有什么共同之处。
指导学生说出要分的总数作为被除数(即分数中的分子),平均分的份数作为除数(即分数中的分母)。
3、请学生独立完成书本P19第2题表格,并校对。
结合学生的回答适时出现相应的图,让学生理解2个三分之一是三分之二;5个三分之一是三分之5。
着重请学生说明“5千克瓜子,平均分成3份,每份重多少千克?”的结果和别的结果有什么不一样,明确分数并不一定是分子比分母小。
4、出示书本P20文字的数量关系式。
请学生用字母表示此式,并说说商(分数)与除法的.关系。
如没有学生提出异议,可举特例让学生补充(b≠0)。
说说为什么除数和分母都不能为0。
学生个别回答,并请部分同学重复。
可让学生同桌互说,并选几位全班汇报。
独立完成,交换批改,让有错的同学来说说错误原因。
学生独立改写。
如果有学生在这里就标注单位“个”,如正确可以不作深入讨论,待后面继续探讨。
只作口头说明,并不呈现完整的数量关系。
三、巩固
1、学生独立完成书本P20练习与应用1、2。
“17分是几分之几时?”如有学生加上不同的单位分或时,可酌情进行讨论。
第2题可再加入被除数比除数大的情况。也可请学生改编成有情境的题加深理解。
2、完成相对应的《课堂内外》或《基础训练》。
独立完成并校对。
《分数除法》教学设计 14
教学目标
1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。
2.运用所学的分数除法的知识,解决相应的实际问题。
教学重难点
教学重点:正确熟练地进行分数除法的'计算。
教学难点:解决相应的实际问题。
教具准备课件
设计意图教学过程特色设计
正确熟练地进行分数除法的计算。
教学过程
一、基础知识练习:
(一)计算:
2/13÷28/9÷43/10÷35/11÷522/23÷2
3/10÷223/24÷2617/21÷518/9÷713/15÷4
学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的
(二)教材P36第13题,学生独立计算。
二、深入练习
教材P36第14题,学生板演,集体订正。
三、解决问题
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
教材P36第12,15,16题。
学生先读题,说一说解题思路,然后学生列式计算。
《分数除法》教学设计 15
教学目标:
1、使学生理解分数除法的意义与整数除法的意义相同。
2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。
3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。
教学重点:
理解分数除法的意义和分数除以整数的计算方法。
教学难点:
正确地归纳出分数除以整数的计算方法,并能准确地计算。
教具准备:
课件、练习纸多张。
教学过程:
一、复习铺垫。
1、根据4×5=20,写出两个除法算式。
(1)让学生说算式,再说说是怎样想的。
(2)让学生回忆整数除法的意义是什么?
二、知识迁移,理解分数除法的意义。
1、课件出示例子,每盒水果糖重100克,3盒有多重?
指名列式计算:100×3=300(克)
2、让学生将上题改编成用除法计算的问题并列式计算。
学生汇报师板书:3盒水果糖重300克,每盒有多重?300÷3=100(克)
300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
先思考,再试着写一写。(学生独立完成列式)
3、出示10厘米=米、100克=千克。(要求学生完成)
4、汇报:
(1)每盒水果糖重110千克,3盒有多重?110 ×3= 310(千克)
(2)3盒水果糖重310千克,每盒有多重?310÷3=110(千克)
(3)310千克水果糖,每盒重110千克,可以装几盒?310÷ 110=3(盒)
5、引导学生观察这三个算式,比较和整数数除法的不同和相同之处,在小组内交流。
6、引导学生理解分数除法的意义和整数除法的意义相同,并试着用自己的话小结分数除法的`意义。(板书部分课题:分数除法的意义)
7、练习。
(1)完成28页“做一做”。
(2)练习八第1题,让学生独立填写到书上32页。
三、自主探究,掌握分数除以整数的计算方法
(一)教学例2
1、谈话:刚才我们根据分数乘法的算式很顺利地写出了除法算式的商,但是如果没有分数乘法的算式,我们又该怎样计算出分数除法的商呢?下面我们就来研究分数除以整数的计算方法。(板书课题:分数除以整数)
2、课件出示例2,指一名同学读题。
3、让学生自己先试着折一折,涂一涂,算一算,再同桌交流折纸方法、计算过程及算理。
4、小组汇报:
A、把45平均分成2份,就是把4个15平均分成2份,每份就是2个15,就是。因此可以列出算式:45÷2=25
B、把45平均分成2份,每份就是45的12也就是45×12。因此可以列式计算如下:
45÷2=45×12=25
(二)教学45÷3
1、初步比较:你觉得哪种方法好?
首先请学生对两种方法进行初步比较:你认为哪种方法好?这时并不急于统一思想,转而请学生计算÷3。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。
2、课件出示问题,学生独立完成例2第二个小问题,同时允许学生折纸。
3、汇报结果。45÷3=45 ×13=415
4、比较两种方法。
提问:为什么这道题没有用两种方法列式?
通过同学们的计算,你认为哪种方法更简便,更常用?
5、观察这两个计算过程,发现什么变了?什么没变吗?
6、分组讨论分数除以整数的计算方法。
通过刚才的计算和观察,大家能发现分数除以整数在计算中有什么规律吗?先独立思考,再在小组内说一说。引导得出:分数除以整数(0除外),等于分数乘这个整数的倒数。(板书)
7、练习
四、练习巩固,拓展应用
课本练习八第1、2、3。
五、全课总结。
1、通过这节课的学习,你有什么收获?
2、通过今天的学习,大家不仅知道了分数除法的意义和整数除法的意义相同,还学会了把分数除以整数转化为分数乘法进行计算。本来无关联的乘除运算在这里居然可以转化统一,这就是转化带给我们的美妙与奇特。学好数学吧,你会感受到数学的无限魅力。
《分数除法》教学设计 16
一、教学内容:
五年级下册教科书第65—66页。
二、教学目标:
1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2.在探究过程中,培养学生观察、比较、归纳等探究的能力。
3.体会知识来源于实际生活的需要,激发学习数学的积极性。
三、教学重点:
经历探究过程,理解和掌握分数与除法的关系。
四、教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
五、教法要素:
1.已有的知识和经验:除法的意义和分数的产生、意义。
2.原型:
(1)把6块月饼平均分给3个小朋友,每人分几块?
(2)把1块月饼平均分给3个小朋友,每人分几块?
(3)把3块月饼平均分给4个小朋友,每人分几块?
3.探究的问题:
(1)整数除法得不到整数商的情况时,可以用什么数表示?
(2)在表示整数除法的商时,用谁作分母?用谁做分子?
(3)分数与除法的关系是怎样的?
六、教学过程:
(一)唤起与生成
1.提出问题:
(1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)
(2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计1算?学生回答,教师板书:1÷3= (块) 3
并让学生说一说是怎样得到的?(学生表述,师用纸片演示)
(3)观察以上两个算式,两个数相除商有什么不同?
2.引入:今天我们就来研究分数与除法的关系。(板书课题)
(二)探究与解决
探究一:体会分数与除法的关系
出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。
1.提出问题:你们知道每人分得多少块吗?
引导学生独立思考。
2.合作探究
学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。
教师巡视,参与指导。
3.交流汇报
交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。
教师根据学生汇报总结不同的分法。
分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。
分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。
分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。
分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。
4.补充事例,举一反三
(1)把2块月饼平均分给3个人,每人分几块?
(2)把5块月饼平均分给8个人,每人分几块?
学生口答,并说说是怎样分的?(教师板书)
探究二:概括分数与除法的关系
1.引导学生观察以上几个算式,想一想:
(1)整数除法得不到整数商的时侯,可以用什么数表示商?
(2)在表示整数除法的商时,用谁作分母?用谁做分子?
(3)分数与除法的关系是怎样的?
2.组织学生小组讨论交流,全班汇报。
3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的`关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)
提问:这个关系式里每个数的范围要注意什么?
学生思考并同桌交流。
指出:因为在除法里除数不能是零,所以分数的分母也不能是零。
如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示?
板书:a÷b=a/b(b≠0)
4. 想一想:分数与除法有区别吗?区别在哪里?
引导学生独立思考,再小组交流。
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
5.引导学生说一说 表示的两种意义。
(三)训练与应用
1.教科书66页“做一做”的第1题。
2.教科书练习十二第1题。
3(四)小结与提高
总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。
《分数除法》教学设计 17
一、教学目标
1、结合具体事例,经历分数除以整数的过程。
2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。
3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。
二、教学准备
小黑板,口算卡。
三、创设情境。
1、复习导入(一生说数,另一生说出它的倒数)。
2、口算练习:(1)205(2)488(3)364。
201/5481/8361/4。
四、自主探究。
(一)根据口算找规律。
1、提问:通过以上计算,你发现了什么?
预设:学生可能说出:
(1)每组的计算结果相同。
(2)除以一个数和乘以这个数的倒数的结果是一样的。
(3)每组算式里都有一个除法和一个乘法,符号后面的'两个数互为倒数,其结果都是相同的。
2、教师引导。
如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?
师生总结:甲数乙数(0除外)=甲数乙数的倒数。
预设:学生可能想不到除数不能为0。
师引导:所以的数都能作除数吗?
3、验证以上结论:
(二)请学生参照以上口算习题,自己试着举出几组来。
1、出示分饼例题。
学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。
预设:学生可能会出现两种想法。
(1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。
(2)求每份是多少,就是求的是多少?
教师根据学生的汇报情况,随机板书。
2、学生观察计算过程,谈发现。
3、师生共同总结分数除以一个数的计算方法。
分数除以一个数(0除外)等于分数乘这个数的倒数。
五、巩固练习。
1、完成试一试。
学生练习。(集体订正时,让学生说一说自己是怎么想的?)。
2、完成练一练。
第1、2、4题:学生完成后,汇报解题思路。师生共同交流。
六、交流收获。
通过这节课的学习,你有哪些收获?
《分数除法》教学设计 18
教学目标:
1、能根据分数乘法应用题的数量关系,理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。
2、提高学生分析问题的能力。
3、培养学生养成良好的审题习惯。
教学重难点:
理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。
教学准备:
电教媒体
教学过程:
一、教学准备
1.说下列各句中单位“1”的量及想到的数量关系式。
(1)我的身高是爸爸的
(2)小华的邮票张数比小芳多
(3)十月份的'电费比九月份减少
(4)小瓶里的果汁是大瓶的
小结:单位“1”的量×对应分率=对应量
2.请学生由(4)编题:编一道一步计算的分数乘法题。
师根据学生回答板书:一大瓶果汁有900毫升,一小瓶里的
果汁是大瓶的 ,一小瓶里果汁有多少毫升?
问:你认为编得对不对?为什么能确认?
(1)学生列式解答(口答)。
(2)为什么用900× ?
(3)小结:(板书)一大瓶果汁数量× =一小瓶果汁数量
二、新授
1.改编成例5:一小瓶里的果汁是大瓶的 ,一小瓶果汁有
600毫升,一大瓶里果汁有多少毫升?
(1)读题,比较异同:
变:条件、问题的位置变了
不变:单位“1”的量没变,数量关系式没变。
(2)怎么解答?生试做,汇报
方程:解设一大瓶x毫升
x=600
算式:600÷
x=600× =600×
x=900=900(毫升)
(1)说想法
(2)怎么检验?
900× =600(毫升) 或600÷900=
(3)再次比较二题的异同
小结解题步骤:
①找单位“1”的量,想数量关系式
②看问题
③列式解答
④检验
2.按照解题步骤完成“试一试”
①读题
②说单位“1”的量及数量关系式
③解答
④汇报
3.按步骤解答练习十二第1题
4.总结、揭题:
(1)总结:求单位“1”的量是多少,可以列方程解答,也可以用对应量÷对应分率=单位“1”的量
(2)揭题:这就是今天学习的“分数除法的实际问题”(板书)
三、练习
1.完成练习十二第3题
小结:为什么都用除法计算?(都是求单位“1”的量。)
2.课作:练一练、练习十二第2题
练习十二第2题改乘法题
3.看关键句,分别编一道乘法题,一道除法题
“黑兔只数是白兔的3/5。”
《分数除法》教学设计 19
教学目标:
知识与技能:
1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2、探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数,解决简单的实际问题。
过程与方法:
让学生在独立思考与合作交流的过程中提高应用所学知识解决实际问题的能力。
情感态度与价值观:
让学生在观察、思考、探索中体验成功的喜悦。
教学重难点:
重点:探索并掌握分数除以整数的计算方法,并能正确计算。
难点:在涂一涂,算一算等活动中,探索并理解分数除法的意义。
教学具准备:
多媒体课件,投影仪。
教学过程:
一、复习导入,激发学习兴趣,明确学习主题。
1、口算
8×3/40=
21×2/7=
5/27×9=
5/6×12=
4/5×5/8=
3/7×7/10=
2、说出下列各数的倒数,你是如何求的`?
1/5
6/7
3/4
3、列式计算
把4张长方形的纸平均分成2份,每份是多少?
把1张长方形的纸平均分成2份,每份是多少?
4、根据演示说一说。
假如这是一张纸,请根据演示(把一张纸的4/7平均分成2份)说一说把什么平均分成2份。(竖着分、横着分)
2、你能用算式表示吗?
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?你能列出算式吗?说说你是怎样想的。
这节课我们就共同探讨分数除法
(一)分数除以整数中相关知识。
出示课题:分数除法
(二)分数除以整数意义和计算方法
二、合作交流,共同解决问题。
1、探讨分数除以整数的意义。
电脑演示把一张纸的4/7平均分成2份,每份是这张纸的2/7
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
你能用算式表示吗?说说你是怎样想的。
电脑直观演示,得出每份是这张纸的4/21
通过上面的学习,你知道了什么?
2、探讨分数除以整数的计算方法
教材第26页填一填、想一想:在()里填上得数,在○里填上“>”、“
如:1÷4=()等三组题
1×1/4=()
1÷4○1×1/4
观察等式左右两边,你发现了什么?
1÷4=1×1/4
10÷5=10×1/5
7÷3=7×1/3
根据除以一个整数(零除外)等于乘这个整数的倒数
我们来试一试:
8/9÷6
4/15÷12
三、深化练习,提高应用能力。
1、
3/8÷5
6/13÷9
5/8÷108/15÷6
2、一小瓶果酱有1/2千克,小明家5天吃完,平均每天吃多少千克?是多少克?
3、填一填
()×5=1/2
()×2=4/5
4×()=1/4
《分数除法》教学设计 20
教学目标
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点
整数除以分数的计算法则推导过程。
【教学难点】
理解一个数除以分数的计算法则的推导过程
教学过程
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的.帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)
五、板书设计
整数除以分数
除以真分数商大于整数
整数除以分数
除以假分数商小于整数
除以1商等于整数
六、教学反思
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛
【《分数除法》教学设计】相关文章:
《分数与除法》教学设计05-13
《分数除法》教学设计05-05
分数和除法教学设计03-02
《分数除法一》教学设计05-24
分数除法二教学设计03-23
《分数与除法》教学设计15篇05-13
《分数与除法》教学设计(15篇)06-02
《分数除法》教学设计(精选12篇)08-03
《分数与除法》教学设计通用15篇06-02
分数除法教学设计(通用21篇)04-10