圆锥曲线教学反思

时间:2024-11-12 11:26:59 偲颖 教学反思 我要投稿
  • 相关推荐

有关圆锥曲线教学反思(通用17篇)

  在日常生活和工作中,我们的工作之一就是教学,反思过去,是为了以后。反思我们应该怎么写呢?下面是小编收集整理的有关圆锥曲线教学反思,仅供参考,欢迎大家阅读。

有关圆锥曲线教学反思(通用17篇)

  圆锥曲线教学反思 1

  高中数学总复习“圆锥曲线”这一章是平面解析几何的内容,以“椭圆”和“双曲线”和“抛物线”这三种曲线作为研究对象,通过引进坐标系,借助“数形结合”思想,来研究曲线本身的方程和简单几何性质,以及直线与曲线的位置关系及弦长等问题。 我们知道“解析法”思想始终贯穿在这全章的每个知识点,同时“转化、讨论”思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。从学生角度而言,大多数学生普遍反映平面解析几何的学习是不轻松的、做题就更困难了。这章公式是多,而且内容较抽象,计算量非常大,所以难度就大大增加,进而给学习带来了挑战及困惑。关于公式,不少学生仍然采用的是传统的学习方式:死记硬背,机械模仿,导致在解题中往往碰壁而影响了学习兴趣及积极性。所以就有了“解析几何”是高中阶段最难的内容。但是用代数方法研究几何思路清晰,可以充分运用各种公式解题,特别要注意寻找题目中或者曲线本身所含的等量关系,解题方法就自然和容易了。当然,对于高考中这道大题来说“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。 如何解决上述矛盾?如何让学生在高考中多得分呢?经过反思:

  一、我们首先要解决“公式”的问题。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。我在教学过程中也是遵循上述思路开展教学的,举得效果还不错。还有,我就是带领学生一起归纳类比,从而加深印象,再要求学生完成复习小结上的那个表格,避免学生解题中公式的张冠李戴问题。再有,在引导中,老师可以形象的指出各种曲线的特点,比如在讲双曲线时可以用一首《悲伤的'双曲线》歌曲来让学生记得只有双曲线才有渐近线。避免了学习过程相当枯燥及乏味,进而失去了学习积极性。

  二、我们要培养学生在考试中的解题策略,并抓出重点学习,归纳方法。这里的内容多、繁,如果有了主次之分就可以稍微轻松点了。在高考中,这里分数在17分左右,但是我们要去研究出题的模式,大多会考曲线的定义和韦达定理,还有解题关键是要用方程思想,列出“等量关系”。所以我们不会做的时候不妨看能不能用定义的等量关系,作为大题,第一问一般不难,不妨把前面的分数拿下来,再想办法把步骤写详细点,争取尽可能多的拿步骤分,因为这里的计算量会很大,所以我们要避免计算错误而导致不得分。 三.教学中还应考虑学生在掌握知识的同时,在感情、意志、态度等方面也能协调发展。学生只有不畏难了,才能数学学好。

  圆锥曲线教学反思 2

  《用圆锥曲线的定义解题》是解析几何中比较重要的一个内容,它直接和圆锥曲线的定义相联系。而我们在教学中,由于各个知识点往往会有很多的判定定理、性质等,所以反而忽略了定义的'应用。

  在整个课程的教学中,我紧扣定义这一个曲线的最基本的东西,对椭圆、双曲线以及抛物线的定义的相同的地方、不同的地方以及各自的应用进行了详尽的阐释。为了能够动态的显示一些轨迹问题的结果,我选择了使用多媒体这一个现代化的教学工具,通过计算机的演示和不同数学软件的应用,培养了学生观察、猜想、严密证明等几个学习数学所必备的步骤。

  圆锥曲线教学反思 3

  圆锥曲线统一定义很简单但非常重要,学习时指导学生注意和抛物线定义相联系。由抛物线定义导入新课,将比值1改变,曲线会是什么形状?学生先猜想,后从形和数两个方面进行验证。从猜想——观察——验证——归纳这一过程中,学生获取了知识,而且加深了理解。通过例题对知识进行运用,巩固了所学知识。通过一题多解,一题多变,使学生产生了学习兴趣。

  教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,留给学生更多的思考和探索,转变学习方式。验证学生的结果。

  成功之处:

  1、教学方法上:参考巴班斯基的“教学过程最优化”理论:“突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段。”结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。

  2. 学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器瓶”,课堂上为学生的`主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),选出代表上讲台讲解等做法,真正做到了“六让”:凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。

  3.学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。每个学生都经过独立思考后在前后左右的同学形成小组中进行了交流讨论,共同进步。

  4,学生参与的“质量”上:课堂气氛不但很活跃,而且真正激发学生深层次的思维和情感的投入。捕捉住了学生发言中的闪光点和思维的火花,不只满足学生此起彼伏的热烈场面。

  5、媒体运用上:利用多媒体形象动态的演示功能提高教学的直观性和趣味性,以提高课堂效益。用了flash软件辅助作图,动画、影像等多种形式强化对学生感观的刺激,可以极大提高学习兴趣,变抽象为直观,加大一堂课的信息容量。

  存在的问题:

  总体来说,这堂课的效果不错,但是由于课堂上对准线和图像的关系强调得不够,学生画图时仍然存在一定的问题,下堂课需要强化这一点。其次,学生的学习能力有待加强。从课堂的效果来看学生对运算的熟练还不够,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。个别关注做得不够。

  圆锥曲线教学反思 4

  本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,这为本节复习课起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》复习的第一节课,着重是教会学生如何判断直线与圆锥曲线的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。这节复习课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。

  根据上述教材结构与内容分析,考虑到学生已有的认知心理特征,制定如下教学目标:

  1、知识目标:巩固直线与圆锥曲线的.基本知识和性质;掌握直线与圆锥曲线位置关系的判断方法,并会求参数的值或范围。

  2、能力目标:树立通过坐标法用方程思想解决问题的观念,培养学生直观、严谨的思维品质;灵活运用数形结合、分类讨论、类比归纳等各种数学思想方法,优化解题思维,提高解题能力。

  3、情感目标:让学生感悟数学的统一美、和谐美,端正学生的科学态度,进一步激发学生自主探究的精神。

  本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥曲线中常见的弦长问题、中点问题、对称问题等。

  接下来,我再具体谈谈这堂课的教学过程:

  (一) 提出问题

  课前我预先让学生先动手解决两个学生熟知的问题:直线与圆、直线与椭圆有两个公共点的问题。让学生自己归纳解决的方法。对直线与圆既可以用几何法也可以用代数法,而直线与椭圆只能用代数法。通过问题的设置一方面巩固旧知,又总结归纳新知:直线与圆与椭圆公共点的个数等于方程组的解的个数。

  (二)例题精析

  接着引导学生自然过渡到直线与抛物线、直线与双曲线的位置关系的判断。对于例1,师生共同完成,特别关注两次分类讨论,一次设直线方程时对斜率存在与否进行讨论,另一次消去一个变量y后得到一个方程,是否为二次方程进行再次分类讨论,求出三条直线方程后,引导学生在图形中画出。引导学生从数和形两方面加以类比分析。再对题目进行变式,使学生感悟直线与抛物线的公共点个数问题常可通过图形进行定性分析,但易出错,可通过定量分析进行论证。对于例2,由学生板演,学生自主探究,师生共同归纳。

  (三)课堂练习巩固方法

  (四)类比归纳提高认识

  由学生总结本节课所学习的主要内容,以及收获,通过数学思想方法的小结,使学生更深刻地了解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。

  圆锥曲线教学反思 5

  本课将借助于“POWERPOINT课件”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。 利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法。 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的'例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题。而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

  圆锥曲线教学反思 6

  在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节

  第一环节:整理本单元学过的.知识点。包括两部分:

  1、同桌互说圆柱和圆锥的特征和相关的计算公式;

  2、全班交流圆柱和圆锥的异同点,整理各种计算公式。

  第二环节:课堂练习。本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。

  虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的能力,对学情的把握也不够好。本计划用7-8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的面积公式,更不要说新公式了,完全是一塌糊涂。鉴于这种情况,我想在今后的教学中应注意以下三点:

  1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。

  2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

  3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。

  圆锥曲线教学反思 7

  我们现在的教学倡导向“40分钟”要质量,如何在有限的课堂时间里,在教材固定教学内容的基础上,使自己的教学有广度有深度,其中练习的设计,也是非常重要的一个环节。下面是我执教第二单元《圆柱和圆锥》时的一些心得和感受。

  一、 准备要充分

  学生哪个环节比较薄弱或是哪里容易出错,相对而言,老教师会有经验得多。作为年轻老师,在有限的时间和精力内,做到精讲精练,确实需要下一番功夫。例如事先把学生做过的练习题先做一遍,开阔自己的'视野,丰富和充实课堂练习,争取在40分钟新课里想办法解决,从而提高课堂实效。但是,只教教材,是远远不够的。除了教材上的练习题,平时还有练习册和试卷,老师都要提前准备,也让学生做到“有备而练”,这样,学生做起作业来就不会产生畏难等消极情绪,反而会增强自信心,激发练习兴趣。

  二、灵活抓时机

  例如在《圆锥体积》一课的新授环节,通过一系列实验,学生不难发现“圆锥的体积是与它等底等高的圆柱的体积的三分之一”,反过来说,“圆柱的体积是与它等底等高的圆锥体积的3倍”。有经验的老师会在这时候进行追问:“在等底等高的条件下,圆柱的体积比圆锥体积多多少?反过来问,圆锥体积比圆柱体积少多少?”从而加深学生对新知的理解,拓展学生的思维空间。我已通过实践证明,这一问一拓展确实可以起到“事半功倍”的效果,学生在做练习册的相关练习时,既轻松又灵活很多。

  通过这件事的点拨,我觉得老师要够“灵活”。一方面要深啃教材,全面了解;另一方面也要开放自己的思维,敢于创新。只要是——既让学生加深了对新知的理解和认识,又让学生的思维得到了训练,这样的练习就是有效的练习,就有助于提高课堂效率。

  写到这里,我深深地觉得自己今后还需要多学习,多思考,不断反思,不断努力。

  圆锥曲线教学反思 8

  对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。

  本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的`体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。

  又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。

  圆锥曲线教学反思 9

  人教六年级下册第三单元《圆柱圆锥》的教学最大的特点是公式多计算量大。我的用意是为了降低本单元的难度让学生有更多的时间熟练掌握运用公式根据公式列出算式。在学生充分理解圆柱表面积、体积和圆锥体积公式的推导过程并能运用所学知识解决实际问题后再要求他们熟记圆周率表。

  教学过程中教师的习惯是让课堂尽量按着教师的设计意图生成的。但实际上课堂教学瞬息万变有时会出现我们意想不到的冷场。上课时当同学们合作解决第一个求圆柱体侧面积的学习目标时学生汇报这个长方形的长相当于圆柱体的底面周长这个长方形的宽相当于圆柱体的高我问有其他想法吗没有学生举手。等待片刻依然沉默于是我顺手拿起学生刚刚展开的圆柱体侧面积我说“你看这个长方形的长可以做圆柱体的底面周长那么谁还可以做圆柱体的底面周长呢”我一边说一边把这个长方形卷起来。学生通过老师演示立刻就明白了长方形的宽也可以做圆柱体的底面周长纷纷把小手举了起来。虽然这节课教学内容已完成但是我感到学生在初学圆柱体表面积时知识没有拓展到长方形的宽也可以做圆柱体的底面周长。

  在掌握了圆柱的体积的基础上学习认识圆锥并进一步教学圆锥的体积。通过教具演示让学生来发现圆锥与等底等高的圆柱之间的关系从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一并能运用这个关系计算圆锥的体积。由于形象直观的'操作学生能理解和掌握这一知识点运用自如。

  第二课时在学习了圆锥体体积的计算方法后我设计了这样一个练习课件出示墙角有一堆沙子现在想知道它的体积该怎样做实物展示让学生们一眼看出这是一个四分之一圆锥在原有知识技能基础上的创新练习让同学们体验到数学的无所不在并运用所学知识解决实际问题不但培养了学生的实践能力同时使学生感到学有所用提高了兴趣。

  但教学过后仍感到有许多不尽人意之处。如三角形旋转成圆锥体哪是底面半径哪是高个别学生还不能清晰辨别。在复习圆柱圆锥体积后运用公式解决问题出现混乱主要体现在求圆锥忘了乘三分之一。另外学生在计算时错误率比较高。

  从单元中学生的练习来看,存在了几个问题。

  1.单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。

  2.求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。

  3.虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。

  4.要注重直观演示

  如:书中的这样一道练习一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,(1)前轮转动一周,前进了多少米?(2)如果每分钟滚动15周,压过的路面是多少平方米?对于这样一道题,一开始觉得学生理解起来应该不难,因此每次只是抽学生回答一下:第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在某日的专家讲座中听了关于直观演示在空间与图形中的作用后,我茅塞顿开,因此,在后来的讲评这道题时,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受。同时我告诉学生,以后遇到你不理解的情况,要积极想办法,如画图、利用手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。

  再如,把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?

  大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

  怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。

  通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,能让学生动手的,一定要让学生通过动手直观地去理解。要不,学生记住的,也是一些死答案。

  圆锥曲线教学反思 10

  这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。

  在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。

  在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。

  从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的'表面积,存在了几个问题。

  1、单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。

  2、求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。

  3、虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。

  在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。

  圆锥曲线教学反思 11

  《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的.目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  圆锥曲线教学反思 12

  今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。

  我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。

  课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的圆;侧面是一个弯曲的面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。

  你怎么知道圆柱的`侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的联系。你能用这张长30厘米,宽20厘米的纸围成怎样的圆柱呢?生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。

  学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。

  圆锥曲线教学反思 13

  本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的'能力。针对本课的教学设计,有以下几点思考:

  1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。

  2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。

  圆锥曲线教学反思 14

  在这节课的教学中,我从导入就适时提出问题,让学生自己跨上探索的道路。当学生发现问题,在其内力的驱使下开展探索研究活动,充分发挥了民主,放手让学生自主地进行研究。在这个充满体验和自主探索的过程中,学生逐步学会数学的思想方法和用数学方法去解决问题,并且获得自己成功的体验,增进学好数学的信心,最终学会学习。主要体现在以下几点:

  1、抓住重点、难点进行教学设计,教学过程中体现学生的主体地位。

  如何体现学生的主体地位,教学要从学生学习的角度出发,学生想怎样学,想学什么,这都应尽量满足学生的要求。根据本课的重点、难点,我设计让学生自己动手,通过学生个人或小组的观察、猜想、推理、验证等方法,在实践活动中使学生掌握圆锥体的特征、高的特点以及圆锥的高的测量方法。

  2、在教学过程中体现教师的主导地位。

  我理解的教师的主导地位就是要在课堂上教会学生学习的方法,分析问题的方法。我设计的问题主要有七个(不含课堂上生成的问题)。精心设计的.问题,激发了学生学习数学的积极性,提高了学生探索问题、研究问题的能力。这样的活动,学生得到的不仅仅是知识,更多的是自信和科学的探究精神。

  3、教学中渗透德育教育。

  数学来源于实际生活,数学又为实际生活服务,这两者相互依存,缺一不可。学数学首先是为了应用,应用数学是学数学的出发点和归宿。鉴以此,我在教学中出了这样一道课后思考题“如果有一堆圆锥形的沙,你能测出这个沙堆的高度吗?课后分小组完成作业”。让学生综合地运用所学的知识,在与同伴合作、交流中,轻松而愉快的理解、掌握和运用知识,并培养了解决生活实际问题的能力。另外,本课我还渗透了“事物之间是互相联系的”这一观点。例如:“将一个圆锥沿顶点到底面的一条直径垂直切开,切面是个等腰三角形”。“我用一个直角三角板沿一条高旋转一周之后就是一个圆锥,圆锥的高就是这个直角三角板的高,圆锥的底面半径就是直角三角板的另一条直角边”等。

  圆锥曲线教学反思 15

  最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的`能力。

  课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。

  圆锥曲线教学反思 16

  新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“我就《圆柱和圆锥的认识》这节课,反思有以下几点:

  一、对圆柱的认识进行重点引导

  认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先创设情境猜一猜,找出圆柱和圆锥,激发学生探究的兴趣。再让学生举例说说生活中还有哪些物体的形状是圆柱和圆锥,我适时地进行点拨,让孩子明白生活中的圆柱和圆锥。在此基础上,结合圆柱的直观图,小组合作学习探究认识了圆柱的底面、侧面和高,并对圆柱的侧面教学作了重点说明,引导孩子沿圆柱的高剪开,展开后是一个长方形,(或正方形)同时还用多媒体动画加以演示,孩子学起来很开心,达到了水到渠成效果。并为侧面积和表面积的学习作了铺垫。

  二、注意学习方法的迁移

  圆锥的认识和圆柱的认识在研究内容上有其相似之处。我引导学生对学习的方法进行有效地迁移,同学们从面(面的个数、面的特征)、直观图、高(什么是高、高的条数)等几个方面,兴趣盎然地投入到观察、研究之中。在小组合作学习、展示交流中,适时地交流和组织阅读课本,学生对于圆锥有了很好的认识。

  三、注意对比

  圆柱和圆锥认识以后,我让学生对于圆柱和圆锥的特征进行了有效的`对比。从而使学生对于圆柱和圆锥的面、高有了更深的认识,完善了学生的知识系统。

  通过本课的教学,我认识到在我们的教学中要注意教材编排的特点,要结合本班学生实际情况进行有机整合,有层次地发挥教师的主导作用,体现学生的主体作用,要培养学生的分析、推理、判断和空间想象能力,理解事物间的相互联系,注意数学思想的渗透,进一步强化学生的立体观念。

  圆锥曲线教学反思 17

  “实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在教学圆锥的体积时,我感悟特深刻。 推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。

  另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的`实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

【圆锥曲线教学反思】相关文章:

数学直线与圆锥曲线的教学反思07-28

圆锥曲线教学反思(通用17篇)02-14

圆锥曲线教学反思范文(精选4篇)01-27

《用圆锥曲线的定义解题》教学反思06-15

圆锥曲线方程教学的改进10-17

美术教学反思教学反思11-24

萧教学反思教学反思12-06

景阳冈教学反思教学反思02-28

教学反思:长城教学反思08-07

《猴王出世》教学反思猴王出世教学反思教学反思03-21