欢迎来到瑞文网!

祖冲之的数学小故事

时间:2022-03-02 09:31:25 祖冲之的数学小故事 我要投稿

祖冲之的数学小故事

  祖冲之的数学小故事(精选8篇)

  祖冲之曾在著作中自述说,从很小的时候起便“专功数术,搜烁古今”。以下是小编为大家收集的祖冲之的数学小故事(精选8篇),欢迎阅读与收藏。

  祖冲之的数学小故事1

  祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。

  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。

  祖冲之的数学小故事2

  祖冲之(公元429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

  宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

  我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

  公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

  尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学着作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

  祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

  祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

  祖冲之的数学小故事3

  祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是“古率”。后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一。

  直到三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

  祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的.近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

  祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”。

  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”。

  祖冲之的数学小故事4

  祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方。晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究。在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。

  在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误。以后他继续钻研,在科学技术方面作出极有价值的贡献。精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一。在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证。他指出当时所流行的何承天(公元370—447年)编定的历法有许多严重的错误。因此他便开始编制另一种新的历法。

  宋大明6年(公元462年),33岁的祖冲之编好了新的历法“大明历”。这是一部最好的历法,但是却遭到了当时朝廷中最得势人物戴法兴的反对。许多官员惧怕戴法兴的势力,不敢对祖冲之新历作公正的评定。祖冲之为了坚持真理,勇敢地与戴法兴展开了辩论,他写了一篇有名的《驳议》,逐条驳斥了戴法兴的无理责难。这场辩论,实际上反映了当时科学发展过程中科学和反科学、进步和保守之间的尖锐斗争。戴法兴等人认为:历代流传下来的东西,都是古制,是不可革的,是“万世不易”的,他们认为天文历法不是“凡人”可以修改的,他们说:“非冲之浅虑妄可穿凿”,甚至进一步责骂祖冲之是“诬天背经”。祖冲之对他们提出了尖锐的反驳。他认为日月五星的运行“非出神怪”,“是有形可检,有数可推”,只要进行细心的观测和推算。孟子早先所说“千年之日至(夏至、冬至)可生而致”的话是完全可以做到的。祖冲之在《驳议》中写了两句非常有名的话“愿闻显据,以覆理实”,“浮词虚贬,窃非所惧”。他希望双方都拿出真实的证据,辨明真正的是非,至于造谣和诽谤,那是他丝毫不怕的。由于种种阻碍,大明历一直到他死后十年,在梁朝才得以颁行(公元510年)。

  祖冲之除天文历法和数学之外,对机械方面也有研究,他制造过“指南车”和“千里船”,此外,他对音律也很精通,对古代的许多书籍进行过注释,他还写过十卷小说,他真称得上是一个多才多艺的科学家。关于他在数学方面的著作,最著名的要算是《缀术》,此外还有《九章算术译注》、《重差注》等等,但这些也都失传了。

  祖冲之的儿子祖暅也是一位杰出的数学家,他继承了祖冲之在数学和天文历法方面的工作,并进一步发扬光大了他父亲的成就。祖冲之的“大明历”就是经过祖暅三次建议之后才被梁朝采用的。关于球体体积的计算也是作为祖暅的工作流传下来的。祖暅终生好学不倦。传说他小的时候,专心读书,连打雷也不觉得,走路时思考问题,曾经撞到别人身上。

  祖冲之父子的名字,不仅在国内已是受到称道,在世界上也受到了应有的重视。

  祖冲之的数学小故事5

  说到祖冲之,脑海里便直接将圆周率与他联系起来,他俩就像人与影子一样早已密不可分了。在古代,没有现代如此发达的科技仅能依靠排列算筹、绳尺测量等简单的工具,祖冲之却能将圆周率精确到小数点后第七位,比欧洲要早一千年,其间的艰难险阻可想而知。如此艰巨而细致的演算,就是现在的我们不借助任何机器也不一定能算得如此精确,但圆周率的前七位我们却能熟记于心、张口就来,实际上我们只不过是走了条捷径,摘取了前人的成果。

  面对如此庞大的计算,祖冲之可谓是大智大勇、临危不惧。相比较我们,那真是自愧不如!在平常的学习中,一遇到繁琐些的问题我们便心浮气躁、抓耳挠腮、眉头紧皱像是在迷宫中晃荡了许久找不到出口一般,心急如焚;有的甚至直接放弃不再去想那些伤脑筋的题目而是在网上搜。如此,思维便得不到发展提升总是在一个层面停滞不前,宛如一只井底之蛙只能贪婪地望着井口的那一小片天空,只能深陷在小小的泥潭而不自知,永远无法亲眼见识天空的广阔无垠。也许是没经历过艰苦的环境不知道学习的重要性,对于手到擒来的东西不知道珍惜,往往在失去之后才明白如此丰富的校园生活是多么的弥足珍贵。

  像那些生活在山区里的贫苦学生往往要比我们更懂得珍惜,每天天不亮就要起床,背着书包走在曲折泥泞的山间小路上,走了几十里才能到校;每天放学都要借着月亮的光辉才能安全到家。在这样恶劣的环境下,他们却能始终如一,每天起早贪黑坚持上学。试想,无论是在古代还是在现代,总有人在艰苦的环境下依然能勤奋好学,而我们生活在如此优越的环境下怎能不发愤图强、奋起直追呢!

  当然,祖冲之能够流芳百世不仅仅是因为他的勤奋好学与数学上的成就,还因为他为官清正、勤政爱民,为人们办了许多实事,是一位名副其实的清官。他还改造指南车、建造千里船等,这无疑是世界科技史上的一个奇迹,是中国人的骄傲。

  我们应该继承并弘扬中华优秀传统文化,更要培养优秀人才,正如赵翼所说“江山代有人才出,各领风骚数百年”。

  祖冲之的数学小故事6

  祖冲之是南朝伟大的数学家和天文学家,他是世界上把圆周率算到第七位的第一人,所以圆周率又被称为“祖率”。他在数学和天文学上的贡献,对后世的发展有着很深远的影响。

  祖冲之生于429年,卒于500年,是中国南北朝时期有名的数学家和天文学家。其祖父乃是祖昌,主管土木工程;其父祖朔,学识渊博,受人尊重。所以祖冲之有一个很好的成长环境,来自家庭的熏陶和自己的努力,使他很早就有了博学的美誉。

  祖冲之能在科学上取得巨大的成就,这和他执着、勤奋的研究态度有着莫大的关系。他搜集了大量的资料,上至远古,下至他生活的年代,他全部都进行考察,而且他绝不会把自己的思维局限在古人的认识中。这也是他能在科学上走得比别人更远的原因之一。

  后来,孝武帝听闻祖冲之的名声,任命他到总明观任职。当时,总明观是最权威的科研机构,在总明观任教,让他能够接触到更多、更丰富的资料,也让他拥有了进行研究与开拓的资本与条件。

  其后数年,祖冲之虽然继续担任朝廷命官,生活并不安定,但他从没放弃过对科学的研究。公元462年,祖冲之在天文学上的呕心沥血之作——新历法《大明历》终于完成。

  祖冲之晚年的时候,由于政局变化,祖冲之的研究方向也随之发生的改变,从对数学、天文学的研究转变为对文学和社会学的研究。这种改变是由生存环境和社会现实所决定的。

  祖冲之从小就对古书一窍不通,却极爱数学,富有实践精神。幼时,私塾的先生告诉祖冲之,“圆周是直径的3倍”。祖冲之对此产生了疑问,第二天就跑去村头测量车轮,量来量去都与这个结论不符。此后多年,这个疑问一直困扰着他。

  后来,祖冲之受到刘徽的“割圆术”的启发,沿着他的方法继续研究下去,以期求得更加精准的结果,而为了防止出现差错,他的每一步都会计算两遍。经过无数遍的演算,最终得出了圆周率在3.1415926和3.1415927之间的结论。

  祖冲之是将圆周率精确到第七位的第一人,与欧洲相比,早了1000多年。所以,圆周率又被称为“祖率”,是对祖冲之这一伟大成就的纪念。

  祖冲之的数学小故事7

  最近我在读《数理化通俗演义》,里面许多科学伟人都给我留下了深刻的印象。我印象最深的是祖冲之推算圆周率的故事。

  我相信大家都知道圆周率吧:3.1415926535......它虽然是个无穷无尽的无限不循环小数,但它的作用非常大,计算不规则图形或者圆形的周长与面积都要用到它。可是,你知道吗,这一串小数却缺不了一个数学家呕心沥血的计算,这个数学家正是中国古代这哲学家祖冲之。

  在中国古代,很多数学家都只计算出圆周率的后两位小数,而且,还存在一些争议。这时祖冲之就准备把圆周率算个明明白白、清清楚楚。于是他就与他的儿子暅儿一起,先按正多边形的周长算,每次都多增加一条边,使图形越来越接近圆形。就这样,经过日日夜夜的一次又一次计算,终于得出了3.1415926这个数字,祖冲之的手指因长期拿算筹,被磨出了血。

  我觉得祖冲之真的是一个伟大的人,他为了算出更精确的圆周率,不辞辛苦,连手指磨出血都不罢休,这真是他坚持不懈、坚强的体现。同时,他奉献出他宝贵的时间、精力,让后世的数学发展奠定了基础,这也体现了他是个舍己为人、乐于奉献的人。他让我们不再为计算圆的周长和面积而感到苦恼。如果你们还觉得圆周率太难背了,请想想祖冲之计算圆周率的辛苦吧。总而言之,祖冲之的精神是值得我们敬佩和学习的!

  祖冲之的数学小故事8

  祖冲之出生在公元429年,正当南北朝刘宋王朝时代。他是个伟大的数学家、天文学家和物理学家,有许多卓越的成就,其中之一就是圆周率的计算。

  圆周率就是圆周的长度和直径的长度的比。这是一个无限不循环的小数,也就是说它是个没完没了的小数,各位数字的变化又没有规律。通常在计算的时候,我们把圆周率定为31416,这个数字实际上比圆周率稍微大一点。祖冲之在一千五百年以前就确定,圆周率在31415926至31414927之间,比31416精确得多。在他之后一千年,阿拉伯数学家才打破了这个精确程度的记录。

  计算圆周率是一件很不容易的事。我们知道,在一个圆里内接正多边形,计算这个正多边形的总的边长,就可以得到圆周的近似值。正多边形的边数越多,总的长跟圆周就越是接近。祖冲之必须从圆的内接正六边形开始,先算内接正十二边形的边长,再算出内接正二十四边形的边长,再算内接正四

  十八形的边长……边数一倍又一倍地增加,一共翻十一翻,直到算出了内接正一万二千二百八十边形的边长,才能得到这样精密的圆周率。

  内接正多边形的边数翻十翻,看起来好像还简单,其实不然。边数每翻一翻,至少要进行七次运算,其中除了加和减,有两次是乘方、两次是开方。祖冲之算出来的结果有六位小数点,估计他在运算的过程中,小数至少要保留十二位。加和减还好办,十二位小数的乘方、尤其是开方,运算起来极其麻烦。祖冲之要是没有熟练的技巧和坚强的毅力,是无法完成这上百次的繁难复杂的运算的。

  在祖冲之以前,已经有人提出圆周率跟π相近似。祖冲之把π叫做“疏率”,提出了另一个圆周率的近似值π,作为“密率”,因为它更加精密,跟圆周率更相接近了。过了一千年,德国人奥托和荷兰人安托尼兹才先后提出π这个圆周率的近似值,欧洲人当时不知道祖冲之已经提出了“密率”,在他们写的数学史上,把它叫做“安托尼兹”。日本数学家主张把π称为“祖率”,这是十分公允的。

  祖冲之计算出圆周率后名声响了起来,结果被宋明帝派到一个落后的穷县当县令。祖冲之上任后经常外出观察,一次他看到农民用脚踏碓舂米的情形,觉得既累又慢,便立即与老农商量,请来木匠、石匠,做了一个以立式水轮为动力的水碓。

  试车成功了,村民们在一旁欢呼雀跃。祖冲之却在一旁思考:如果能做个水碓磨,既能舂米又能磨面不是更好吗?经过反复实践,改进,水碓磨车终于试制成功了,这其中包含着力水、杠杆、凸轮的原理。

  后来,祖冲之又被调到京城任职。当时的达官贵人为出门显示排场与威风,纷纷指令手下工匠制造指南车。祖冲之经过精心研究和设计,再利用精确圆周率计算,在车前做了个铜铸齿轮盘,随便车子怎么转,车上的铜人总是指着南方。

  祖冲之就是这样不断地进行科学探索。他的科学成就,在我国科学技术发展史上,将永远放射光芒。他的刻苦学习、认真钻研、勇于创造和坚持真理的精神,是值得我们学习的。

  边读边想:祖冲之是谁?他最早计算出了什么,比其他国家早了多少年,他涉猎了哪几个科学领域,他有哪方面是值得我们学习的?

【祖冲之的数学小故事】相关文章:

数学祖冲之的故事手抄报07-18

数学家名人故事:数学家祖冲之_900字07-30

数学趣味小故事02-18

数学小幽默故事10-14

著名数学家的传奇小故事10-17

哲理小故事 充满智慧的小故事12-14

数学家的小故事欣赏(精选7篇)04-22

哲理的小故事08-21

弟弟的小故事07-18

王之涣的小故事10-10