四年级数学手抄报内容
在现实的学习、工作中,大家最不陌生的就是手抄报了吧,借助手抄报可以培养我们动手、动脑的习惯。还苦于找不到好的手抄报?下面是小编精心整理的四年级数学手抄报内容,欢迎阅读,希望大家能够喜欢。
四年级数学手抄报内容
一、小数的认识和加减法
【知识要点】
小数的意义
1、小数的意义: 用来表示十分之几、百分之几、千分之几……的数,叫小数。
2、体会十进分数与小数的关系,并能互相转。
3、表示十分之几的小数是一位小数,百分之几的小数是两位小数,千分之几的小数是三位小数……
4、小数的读写法。
5、借助计数器,介绍小数部分的数位以及数位之间的进率
6、掌握小数的数位和计数单位 .
7、了解小数的组成:整数部分和小数部分
测量活动(小数的单位换算 )
1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位……).低级单位转化为高级单位时,先将这个低级单位的数改写成分数的形式,再写成小数的形式.
2、会进行单名数与复名数之间的互化.
比大小(比较小数的大小)
1、会比较两个小数的大小以及将几个小数按大小顺序排列.
2、比较小数大小的方法:先看整数部分,整数部分大的小数就大.整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大……
购物小票-----小数的加减法(不进位,不退位)
1、不进位加法,不退位减法的计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算.
2、能解决简单的小数加减法的实际问题.
量 体 重----小数的加减法(进位加、退位减)
1、小数进位加法和退位减法的计算法则(同整数加、减法的法则相同).
2、小数的性质:小数末尾加上“0”或去掉“0”小数的大小不变.
3、整数减去小数,可以在整数小数点的后面添上“0”,帮助计算.
歌手大赛---小数加、减法的混合运算
1、掌握小数混合运算的顺序与整数四则混合运算一样.
2、整数加、减法的运算定律同样适用于小数加减法.
3、掌握小数加、减法的估算.
二、认识图形
【知识框架】
1、图形分类(按不同标准给已知图形进行分类)
三角形的分类(认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形)
2、三角形 三角形内角和
三角形三边之间的关系
3、四边形的分类(初步认识梯形、进一步认识平行四边形)
4、图案欣赏
【知识要点】
图形分类
1、按照不同的标准给已知图形进行分类:
(1)按平面图形和立体图形分;
(2)按平面图形时否由线段围成来分的;
(3)按图形的边数来分.通过自己动手分类,对图形进行再认识,了解图形的特征.
2、了解平行四边形易变形和三角形的稳定性在生活中的应用.
三角形分类
1、把三角形按照不同的标准分类,并说明分类依据.
(1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形.
(2)按边分,分为:等腰三角形、等边三角形、任意三角形.有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形.
2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊
的等腰三角形.
三角形内角和
1、任意一个三角形内角和等于180度.
2、 能应用三角形内角和的性质解决一些简单的问题.
三角形边的关系
1、 三角形任意两边之和大于第三边.
2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形.如果能围
成三角形,能围成一个什么样的三角形.
四边形的分类
1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形.
2、知道长方形、正方形是特殊的平行四边形.
3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形.
图 案 欣 赏
1、通过欣赏图案,体会图形排列的规律,感受图案的美.
2、利用对称、平移和旋转,设计简单的图案.
三、小数乘法
【知识框架】
小数乘法的意义 小数乘法的意义
小数点移动引起小数大小变化的规律
积的小数位数与乘数的小数位数的关系
计算小数乘法 会用竖式计算小数乘法及估算
小数的混合运算(整数运算定律完全适合小数)
【知识要点】
文具店(小数乘法的意义)
通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算.
1、小数乘法的意义
小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的十分之几,百分之几……是多少.
2、小数的计算法则
计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0.
小数点搬家(掌握小数点移动引起小数大小变化的规律)
明白小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推.小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推.
街心广场(积的小数位数与乘数的小数位数的关系)
积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数.
包装(小数乘法2)
小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算.根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数.
爬行最慢的哺乳动物(小数乘法3)
进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零……
手拉手(小数的混合运算)
小数四则混合运算的运算顺序与整数四则混合运算的顺序相同.整数的运算定律在小数运算中仍然适用.例如乘法的结合律,交换律,分配律.等等.
四、观察物体
不同位置观察物体的范围不同
不同位置观察物体的形状不同
节日礼物(不同位置观察物体的范围不同)
1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化.
2、根据观察到的画面,判断出观察者所在的位置.
天安门广场(不同位置观察物体的形状不同)
1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系.
2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序.
五、“小数除法”
《精打细算》―――除数是整数的小数除法
(1)、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.
(2)、小数除以整数的计算方法:除数为整数的小数除法和整数除法的计算类似,只要商的小数点和被除数的小数点对齐就可以了.
2、《参观博物馆》―――整数除以整数商是小数的小数除法
整数除以整数,商是小数的小数除法的计算方法:先按照整数除法的法则去做,如果除到被除数的末尾仍有余数,就在后面填上0继续除.
3、《谁打电话的时间长》―――除数是小数的除法
(1)、商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.
(2)、除数是小数的小数除法的计算方法:要把被除数和除数扩大相同的倍数,使除数变成整数,再按照小数除以整数的方法进行计算.
4、《人民币兑换》―――积、商的近似值
求近似值方法:积取近似值是先精确计算,再根据题目要求取近似值;商取近似值是直接根据要求多除一位,然后根据题目要求取近似值.注意:有时会出现四不舍、五不入的情况,应根据题目的特点去求出近似数.
5、《谁爬得快》―――循环小数
(1)、循环现象:生活中很多时候有依次不断重复出现的现象.如:日出日落、时间……
(2)、循环小数:从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数就叫做循环小数.
(3)、 会用四舍五入法对循环小数取近似值,方法与小数取近似值的方法相同,保留几位小数就看这个小数的下一位.
6、《电视.》――小数的四则混合运算
(1)、小数连除和乘除混合运算,运算顺序和整数是一样的.
(2)、计算小数四则混合运算和整数四则混合运算的顺序完全相同.
激情奥运
(1)通过“奥运”提供的各种信息,综合应用所学的知识和方法,解决有关的问题.
(2)通过解决奥运赛场上的有关问题,体会到数学和体育这间的联系,进一步体会数学的价值.
六、游戏公平
【知识框架】
通过游戏活动,体验事件发生的等可能性.
等可能
通过游戏活动分析,判断游戏规则的公平
能制定公平的游戏规则.
能通过实验感受实际生活中的随机性.
可能性不相等
游戏公平
能通过游戏活动,体验事件发生可能性不相等.
能辨别游戏可能性是否相等.
能通过自己的分析思考修改游戏规则使之公平,且方法多样.谁 先 走(判断规则的公平性,设计公平的规则)
【知识要点】
1、体会事件发生的等可能性.体会可能性相同游戏公平,可能性不同游戏不公平.
2、感受规则在游戏中的作用,建立规则意识.并会制定公平的游戏规则.
3、进一步体验游戏中存在的随机性的特点.
七、方程
用字母表示数.
方程
1.方程的意义
2.解简易方程3.列方程解应用题
【知识要点】
用字母表示数
1、用字母表示运算定律和有关图形的面积公式.
例如:加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
减法的特性:a-b-c=a-(b+c)
乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b+c)=a×b×a×c
正方形周长:c=4a
正方形面积:s=a×a
长方形的周长:C=(a+b)×2
长方形面积:s=a×b
此外,还可以拓展到以前曾经学过的
路程=速度×时间
总价=单价×数量……
2、字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略.例如:a×5=5·a=5a 数字一般都写在字母的前面.
3、区别a的平方和2乘a的区别.
方程(方程的意义)
1、了解方程的意义:含有未知数的等式叫做方程.
2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.
3、根据情境图找出等量关系,会列方程.
天平游戏一(解简易方程未知数是加数或被减数)
1、等式两边都加上或减去同一个数,等式仍然成立.
2、能根据等式的.这个性质求出方程中的未知数.
方程的使方程左右两边相等的未知数的值叫做方程的解.
解方程:求方程的解的过程叫做解方程.
3、学会检验方程的解是否正确.
天平游戏二(解简易方程未知数是因数或被除数)
1、等式两边都乘或除以同一个数(零除外),等式仍然成立.
2、能根据一定的情境,列方程解决问题.
猜数游戏(解简易方程)
1、会利用等式的性质解ax±b=c类型的方程.并能够把方程的解带回方程中进行检验.
2、会用方程解答简单的应用题.
邮票的张数(列方程解应用题)
1、学会解形如cx±ax=b这样的方程,能够运用方程解应用题.
2、使学生掌握应将一倍数设为未知数.
第一单元知识点(四则运算)
1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3. 算式里有括号,先算括号里面的,在算括号外面的。
4. 加法、减法、乘法和除法统称四则运算。
5. 一个数加上0还得原数,一个数减去0也得原数。
6. 被减数等于减数,差是0。
7. 一个数和零相乘,仍得0。
8. 0除以一个非0的数,还得0。
9. 0不能作除数。
10.在解决问题时,如果列综合算式,必须用脱式计算。
11.任何数除以0都得0。(×)因为0不能做除数。小学四年级数学下册四则运算知识点
第二单元知识点(观察物体)
1. 如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。小学四年级数学观察物体知识点
第三单元知识点(运算定律)
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b) ×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6. 类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-ca-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12.另两种简便方法:
(1)把一个因数改写成两个一位数相乘的形式。
(2)把一个因数改写成两个数相除的形式,然后变成乘除混和运算。小学四年级数学运算定律知识点
第四单元知识点(小数的意义和性质)
1. 在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。
2. 分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。
3. 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),三位小数的计数单位是千分之一(写作0.001)。
5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……
6. 小数的读法:
(1)先读整数部分,再读点,最后读小数部分。
(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。
(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。
7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
8.利用小数的性质进行小数的化简和改写。
例如:0.70=0.7 105.0900=105.09(这是小数的化简)
又如:不改变数的大小,把下面各数写成三位小数
0.2=0.200 4.08=4.0803=3.000(这是改写小数)
9.如何比较小数的大小?
先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……
10.小数点移动的规律:
(1)小数点向右
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
……
(2)小数点向左
移动一位,小数就缩小到原数的1/10;
移动两位,小数就缩小到原数的1/100;
移动三位,小数就缩小到原数的1/1000;
……
11.把量和单位名称合起来的数叫名数。
12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……
13.复名数:带有两个或两个以上的单位名称的名数。例如:
20元5角8分 5吨600克……
14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:
(1)高到低,乘进率,小数点,向右移,移几位,看进率。
例如:1.32千克=(1320)克 (58 )厘米=0.58米
1千克=1000克1米=100厘米
高→低 低←高
1.32×1000=1320克0.58×100=58厘米
(2)低到高,用除法,小数点,向左移,移几位,看进率。
例如:
7450米=(7.45 )千米 (9.02)吨=9020千克
1千米=1000米1吨=1000千克
低→高 高←低
7450÷1000=7.45千米 9020÷1000=9.02吨
15.求小数的近似数,可用“四舍五入”法。
16.在表示近似数时,小数末尾的0不能去掉。
17.求小数的近似数的方法:
求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。
例如:9.953≈ 10(保留整数)
9.953≈10.0 (保留一位小数)
9.953≈9.95 (保留两位小数)
23.4395≈23.440 (保留三位小数)
18. 1.0比1精确。保留的位数越多,数就越精确。
19.如何把一个数改写成以万为单位的数?
方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。
方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。
20.如何把一个数改写成以亿为单位的数?
方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。
方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。
注:对于改写的方法,同学们灵活掌握。
21.下列各数中的“6”分别表示什么?
6.32(表示6个一) 0.6(表示6个十分之一)0.86(表示6个百分之一)
62.32(表示6个十)3.416(表示千分之一)
22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678
23.去掉小数点后面的0,小数的大小不变。(×)
应该是去掉小数末尾的零,小数的大小不变。
24.小数就是比1小的数。(×)例如:10.1﹥1
25.近似数是0.5的两位小数有5个。(×)
近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入” 法。)
26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)
在表示近似数时,小数末尾的0不能去掉。
27.小数的位数越多,数就越大。(×)
28.小数都比自然数小。(×)
29.整数都大于小数。(×)
30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。
方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。
求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”, 千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。小学四年级数学知识点:小数的意义和性质
第五单元知识点(三角形)
1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形有3条边,3个角,3个顶点。
3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
4.三角形有3条高,3个底。
5.三角形具有稳定性,不易变形。
6.三角形任意两边的和大于第三边。
7.三角形任意两边的差小于第三边。
8. 快速判断任意三条线段能否围成一个三角形:看两条较短的线段之和是否大于第三条线段。
9.直角三角形的两条直角边互为底和高。
10.三个角都是锐角的三角形,是锐角三角形。
11.有一个直角的三角形,是直角三角形。
12.有一个钝角的三角形,是钝角三角形。
13.三角形按角分:锐角三角形、直角三角形、钝角三角形
13.三角形按边分:普通三角形、等腰三角形、等边三角形
14.有两条边相等的三角形是等腰三角形。(按边)
有两个角相等的三角形是等腰三角形。(按角)
15.有三条边相等的三角形是等边三角形。(按边)
有三个角相等的三角形是等边三角形。(按角)
注:课本83页三角形集合图。
16.等边三角形是特殊的等腰三角形。
17.等边三角形一定是锐角三角形。
18.等腰三角形的两腰相等,两个底角相等。
19.等边三角形的三条边相等,三个角也相等,都是60度。
20.等边三角形也叫正三角形。
21.等腰三角形中,两腰相交于一点形成的夹角是顶角;两腰与底相交形成的两个夹角是底角。(P84图)
22.三角形的内角和是180度。
23.多边形的内角和=180度×(多边形的边数-2)
24. 任意一个四边形的内角和是360度。
25.两个完全一样的三角形可以拼成三角形、正方形、长方形、平行四边形、和四边形。
26.最少用2个直角三角形可以拼成一个长方形;
最少用3个等边三角形可以拼成一个等腰梯形。
最少用2个等边三角形可以拼成一个菱形。
27.无论是什么形状的图形,没有重叠、没有空隙地铺在平面上,就是密铺。
28.把任何一个三角形的三个内角剪下来,都可以拼成一个平角。
29.所有的等边三角形都是锐角三角形。
30.有三个角的图形一定是三角形。(×)
31.有两个锐角的三角形一定是锐角三角形。(×) 因为也有可能是直角三角形。
32.等腰三角形一定是锐角三角形。(×) 因为等腰三角形中可能是等腰直角三角形、等腰锐角三角形、等腰钝角三角形。
33.一个大三角形和一个小三角形的三个内角和是不相等的。(×)
因为三角形的内角和是180度。
34.一个钝角三角形里最多有两个钝角。(×)
因为任意一个三角形里至少有两个锐角,如果有两个钝角或两个直角,三角形的内和就大于了180度,根本拼不成三角形。
35.两个三角形一定能拼成一个平行四边形。(×)
因为必须是两个完全一样的三角形才能拼成一个平行四边形。
36.用两个直角三角形一定可以拼成一个长方形。(×)
因为必须是两个完全一样的直角三角形才能拼成一个长方形。
37.由三条线围成的图形叫做三角形。(×)
因为由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
38.三角形的底越长,这条底边上的高就越短。(√)
39.一个三角形的每一条边的长度确定后,这个三角形的形状就再不发生变化。(√)
40一个三角形只有一条高。(×) 因为每个三角形都有3条高。
41.直角三角形的两个锐角的和是90度。(√)
42.有一个角是60度的等腰三角形一定是正三角形。(√)
43.0.15时=15分(×)因为每相邻两个时间单位的进率不是100。
44.0.3与0.30的大小相同,但表示的意义不同,计数单位也不同。(√)
45.四个完全一样的正三角形可以拼成一个大三角形。(√)小学四年级数学知识点:三角形
第六、七单元知识点(小数的加法和减法、平均数与条形统计图)
1.小数加、减法应注意:
(1)小数点要对齐,也就是相同的数位要对齐;
(2)从最低位算起;
(3)得数小数部分末尾有0,一般要把0去掉。
2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成:20.00-1.86
3.整数的运算定律在小数运算中同样适用。
4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。
5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。
6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。如果观察不出折线统计图的趋势来,只好计算后再作比较。
7.折线统计图的特点:能反映变化趋势。
卫星运行 (三位数乘两位数)
知识点 :
估算方法。用四舍五入法进行估算。
利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。
补充 知识点
时、分、日之间的单位互化。
1时=60分 1日=24时
因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
体育场(实际生活中的估算)
知识点 :
估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。
神奇的计算工具
知识点 :
在学生原有基础上进一步认识并会使用计算器。
利用“M+”存储键,“MR”提取键,计算四则运算的题目。
了解计算机中使用的是二进制计数法,就是满2进1。
补充 知识点 :了解两个因数越接近(即差越小),积越大,两个因数相等时,积是最大的;两个因数的差越大,积越小。
探索与发现(一)(有趣的算式)
知识点 :
第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
数学广角——植树问题
一、1.两头(两端)要栽:棵数=间隔数+1
2.一头(一端)要栽:棵数=间隔数
3.两头(两端)不栽:棵数=间隔数-1
二、棋盘棋子数目:
1.棋盘最外层棋子数:每边棋子数×边数-边数
2.棋盘总的棋子数:每行棋子数×每列棋子数
3.方阵最外层人数:每边人数×4-4
4.多边形上摆花盆:每边摆的花盆数×边数-边数
数学广角——鸽巢问题
一、鸽巢问题
1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。
2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。
例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
大数的认识
1、10个一千是一万,10个一万是十万,10个十万是一百万,10个一百万是一千万。
2、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。
3、一(个)、十、百、万、十万、百万、千万、亿、十亿……都是计数单位。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
数位顺序表
数级……亿级万级个级
数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位
计数单位……千亿百亿十亿亿千万百万十万万千百十个
5、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。
6、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。
7、写数时,万级和亿级上的数都是按照个级上数的方法来写,哪一位不够用0来补足。改写“万”或“亿”作单位的数,只要将末尾的4个0或8个0去掉或加上“万”或“亿”字就行了。1.把多位数改写成“万”、“亿”。中间要用“=”连接
8、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。
方法是:看尾数位上的数,如果是4或比4小,就把尾数舍去,并在数的末尾添上一个计数单位“万”或者“亿”;如果是5或比5大,要在前一位加1,再把尾数舍去,添上计数单位“万”或者“亿”。得出的是近似数,中间要用“≈”连接。
9、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。
10、我国在十四世纪发明的至今仍在使用的计算工具是算盘。算盘上方一个珠子代表5,下方一个珠子表示1。
11、在计算器上,ON/C键是开关及清屏键,CE键是清除键,AC键是归0键。+、-、×、÷键是运算符号键。
怎么样才能打好数学基础
第一,重视数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,学生缺乏对概念的理解。
还有一部分同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。
小学数学整数的概念
十进制计数法;一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法
整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。
整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。
四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法.
整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。
【四年级数学手抄报内容】相关文章:
数学手抄报内容比06-29
数学手抄报内容精选06-26
数学手抄报内容08-23
数学的手抄报内容08-17
数学手抄报的内容10-11
关于数学手抄报内容09-09
数学天地手抄报内容06-25
漂亮数学手抄报内容03-01
数学乐园手抄报内容08-29
趣味数学手抄报内容08-05