定义:
函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。
如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:
DQ(Q是函数的定义域)。
区间D上,对于函数f(x),(任取值)x1,x2∈D且x1>x2,都有f(x1)>f(x2)。或,x1,x2∈D且x1>x2,都有f(x1)<f(x2)。
函数图像一定是上升或下降的。
该函数在ED上与D上具有相同的单调性。