因式分解公式

时间:2024-06-04 08:44:29 好文 我要投稿

因式分解公式

  因式分解公式 篇1

  平方差公式:a2-b2=(a+b)(a-b)

  ①公式左边形式上是一个二项式,且两项的符号相反;

  ②每一项都可以化成某个数或式的平方形式;

  ③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积。

  完全平方公式:(a+b)2 =a2+2ab+b2

  (a-b)2=a2-2ab+b2

  ①左边相当于一个二次三项式;

  ②左边首末两项符号相同且均能写成某个数或式的完全平方式;

  ③左边中间一项是这两个数或式的积的`2倍,符号可正可负;

  ④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定。

  因式分解公式 篇2

  一、教材分析

  1、教材的地位与作用

  “整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

  因式分解是一种常用的.代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

  2、教学目标

  (1)会推导乘法公式

  (2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

  (3)会用提公因式法、公式法进行因式分解。

  (4)了解因式分解的一般步骤。

  (5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

  3、重点、难点和关键

  重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

  难点:正确运用乘法公式;正确分解因式。

  关键:正确理解乘法公式和因式分解的意义。

  二、本单元教学的方法和策略:

  1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.

  2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.

  3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.

  4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.

  三、课时安排:

  2.1平方差公式 1课时

  2.2完全平方公式 2课时

  2.3用提公因式法进行因式分解 1课时

  2.4用公式法进行因式分解 2课时

  因式分解公式 篇3

  王老师的《因式分解》这节课,他上的这节课每个环节层层递进,落实有效,教学流程自然流畅,有独创性。教学设计张弛有度,实施过程中有水到渠成的衔接美。教师教态大方,亲和力强,对学生启发点拨到位,驾驭课堂的能力强,整节课,学生在愉悦、宽松和谐的学习氛围中,学得轻松,学得愉快。收到良好的教学效果。其中印象最深的环节有:

  1. 新课引入十分好,但没把握好进一步解读课题的机会。

  2. 教师结构设计的很好,教学过程中相当自然。

  3. 课堂小结很好,把因式分解(平方差公式)的特点进行了全面的概括,但略显课堂时间较紧。

  4. 练习设计由易到难,层层递进,若教师再讲的少一点,教学效果可能较 佳。

  5. 作为一名实习教师,在原有的基础上有很多进步,课上得相当不错。

  6. 教师的`语言亲和力强,学生和教师配合默契,课堂气氛高涨,但略显教师讲课过多。

  7. 陈老师能根据我班级学生特点,设计教学内容,教学效果体现得更佳。

  8. 教师在教学过程中缺少让学生“感悟”的过程。

  9. 教师教学语言规范,教态自然,对学生有亲和力,教室互相到位,对学生的学习有一定的帮助。

  10.能为学生提供大量数学活动的机会,让学生成为课堂学习的主人。

  通过这次评课,让我在教材教法、课堂教学策略等方面受益匪浅,并希望课堂上一些新理念、策略充实以后教学实践中。

  因式分解公式 篇4

  公式法进行因式分解,除了逆用平方差公式之外,还有两个相对来说较难的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

  逆用完全平方公式进行因式分解关键同样是搞清完全平方公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。

  有了前边学习完全平方公式为基础,逆用完全平方公式进行因式分解只需要“颠倒使用”即可:等号右边作为“条件”,左边作为“结果”,但对学生来说,还是相当困难的。

  逆用完全平方公式进行因式分解的步骤可分三步:

  1、写成“首平方,尾平方,2倍之积中间放”的.形式

  2、按公式写出“两项和的平方”的形式,即因式分解

  3、两项和中能合并同类项的合并。

  例题及练习的呈现次序尽量本着先易后难、先单一后综合的螺旋上升原则。

  1、a、b代表单独单项式,如:(1)m2-6m+9(2)4a2-4ab+b2

  2、a、b代表多项式,如:(1)(a+2b)2-8a(a+2b)+16a2

  (2)4(x+y)2+25-20(x+y)

  在此要有“整体思想”的意识,注意:相同部分作为一个整体然后再套用公式。

  3、先提取公因式,再用完全平方和(或差)公式如:

  (1)ay2-2a2y+a3

  (2)16xy2-9x2y-y2

  4、先转化一步,再用完全平方和(或差)公式,如:

  (1)-m2+2mn-n2(2)3a2+6a+27

  尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题,如部分学生直接感到无从下手。

  因式分解公式 篇5

  一、运用平方差公式分解因式

  教学目标1、使学生了解运用公式来分解因式的意义。

  2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

  3、掌握运用平方差公式分解因式的.方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

  重点运用平方差公式分解因式

  难点灵活运用平方差公式分解因式

  教学方法对比发现法课型新授课教具投影仪

  教师活动学生活动

  情景设置:

  同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?

  (学生或许还有其他不同的解决方法,教师要给予充分的肯定)

  新课讲解:

  从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

  首先我们来做下面两题:(投影)

  1.计算下列各式:

  (1)(a+2)(a-2)=;

  (2)(a+b)(a-b)=;

  (3)(3a+2b)(3a-2b)=.

  2.下面请你根据上面的算式填空:

  (1)a2-4=;

  (2)a2-b2=;

  (3)9a2-4b2=;

  请同学们对比以上两题,你发现什么呢?

  事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)

  比如:a2–16=a2–42=(a+4)(a–4)

  例题1:把下列各式分解因式;(投影)

  (1)36–25x2;(2)16a2–9b2;

  (3)9(a+b)2–4(a–b)2.

  (让学生弄清平方差公式的形式和特点并会运用)

  例题2:如图,求圆环形绿化区的面积

  练习:第87页练一练第1、2、3题

  小结:

  这节课你学到了什么知识,掌握什么方法?

  教学素材:

  A组题:

  1.填空:81x2-=(9x+y)(9x-y);=

  利用因式分解计算:=。

  2、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

  (1)1-16a2(2)9a2x2-b2y2

  (3).49(a-b)2-16(a+b)2

  B组题:

  1分解因式81a4-b4=

  2若a+b=1,a2+b2=1,则ab=;

  3若26+28+2n是一个完全平方数,则n=.

  由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

  学生回答1:

  992-1=99×99-1=9801-1

  =9800

  学生回答2:992-1就是(99+1)(99-1)即100×98

  学生回答:平方差公式

  学生回答:

  (1):a2-4

  (2):a2-b2

  (3):9a2-4b2

  学生轻松口答

  (a+2)(a-2)

  (a+b)(a-b)

  (3a+2b)(3a-2b)

  学生回答:

  把乘法公式

  (a+b)(a-b)=a2-b2

  反过来就得到

  a2-b2=(a+b)(a-b)

  学生上台板演:

  36–25x2=62–(5x)2

  =(6+5x)(6–5x)

  16a2–9b2=(4a)2–(3b)2

  =(4a+3b)(4a–3b)

  9(a+b)2–4(a–b)2

  =[3(a+b)]2–[2(a–b)]2

  =[3(a+b)+2(a–b)]

  [3(a+b)–2(a–b)]

  =(5a+b)(a+5b)

  解:352π–152π

  =π(352–152)

  =(35+15)(35–15)π

  =50×20π

  =1000π(m2)

  这个绿化区的面积是

  1000πm2

  学生归纳总结

  因式分解公式 篇6

  公式法因式分解虽然应用的公式只是三条,但要灵活应用于解题却不容易,所以我在制定这一章书的教学计划时就对教材的教学顺序作出了一些调整。因式分解的公式是乘法公式的逆运算,所以我将因式分解提前学,在学会乘法公式后暂时略过整式的除法直接学习因式分解,我认为这样调整后可以加强公式的熟练使用;另一方面我加强乘法公式的练习巩固,在没有学习因式分解之前,先针对平方差公式以及完全平方公式的应用及逆用作了一个专题训练。

  在学习因式分解的这个专题训练的效果是不错的,因为平方差公式以及完全平方公式都是刚刚学习且应用较多的公式。作好这些准备工作之后,便开始学习因式分解。

  正式提出因式分解的定义的时候,同学们都一副明了的表情。而我也强调的就是因式分解与乘法公式是相反方向的变形,并且在练习中一再将公式罗列出来。然后讲授提公因式法、公式法(包括平方差、完全平方公式),讲课的时候是一个公式一节课,先分解公式符合条件的形式再练习,主要是以练习为重。讲课的过程是非常顺利的.,这令我以为学生的掌握程度还好。因为作业都是最基本的公式应用,而提高题一般是特优生才会选择来做。

  讲完因式分解的新课,我随堂出了一些综合性的练习题,才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。

  课后,我总结的原因有以下四点:

  1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。

  2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。

  3、灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9-25x2化成32-(5x)2然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。

  4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。

  因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。

  因式分解公式 篇7

  设计思路:

  教师是学习活动的引导者和组织者,学生是课堂的主人。教师在教学中要充分体现教师的导向作用,尊重学生的个体差异,选择适合自己的学习方式,鼓励学生自主探索与合作交流,让学生经历数学知识的形成与应用过程,鼓励学生的直觉并且运用基本方法进行相关的验证,指导学生注重数学知识之间的联系,不断提高解决问题的能力。

  教学过程:

  师生问好,组织上课。

  师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容?

  生1:(答略)

  师:你能用符号语言来表示这个公式吗?

  生1:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

  师:不错,请坐。由此我们可以看出完全平方公式其实包含几个公式?

  生齐答:两个。

  师:接下来有两道填空题,我们该怎么进行填空?

  a2+ +1=(a+1)2 4a2-4ab+ =(2a-b)2

  生2:(答略)

  师:你能否告诉大家,你是根据什么来进行填空的吗?

  生2:根据完全平方公式,将等号右边的展开。

  师:很好。(将四个式子分别标上○1○2○3○4)

  问题:○1、○2两个式子由左往右是什么变形?

  ○3、○4两个式子由左往右是什么变形?

  生3:(答略)

  师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:

  a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 (板书)

  问题:这两个式子由左到右的变形又是什么呢?

  生齐答:因式分解。

  师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。

  这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题)

  师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。

  (经过讨论之后)

  生4:左边是三项,右边是完全平方的形式。

  生5:左边有两项能够写成平方和的形式。

  师:说得很好,其他同学有没有补充的?

  生6:还有一项是两个数的乘积的2倍。

  师:这“两个数的乘积”中“两个数”是不是任意的?

  生6:不是,而是刚才两项的底数。

  师:刚才三位同学都回答得不错,每人都找出了一些特征。再请一位同学来综合一下。

  生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。右边是两个数的和或差的平方。

  教师在学生回答的基础上总结:

  1)多项式是三项式

  2)有两项都为正且能够写成平方的形式

  3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负

  4)等号右边为两平方项底数和或差的.平方。

  师:我们如何将符号语言转化为文字语言呢?

  生8:a、b两个数的平方和加上a、b乘积的2倍,等于a与b的和的平方;

  a、b两个数的平方和减去a、b乘积的2倍,等于a与b的差的平方。

  师:如果不用字母a、b,又怎么表达?能否将两句合并成一句呢?

  生9:两个数的平方和加上或减去这两个数的乘积的2倍,等于这两个数的和或差的平方。

  师:非常好!我们以后只要遇到这种类型的多项式可以直接利用完全平方公式方便地进行因式分解了。

  通过刚才的学习,我们已经初步掌握了利用完全平方公式分解因式的有关知识,下面有几道练习题向我们同学提出了挑战,看你掌握知识的情况:

  判断下列各式是不是完全平方式,并说出理由。

  (1)a2-4a+4 (2 )x2+4x+4y2 (3 )4a2+2ab+ b2

  (4 )a2-ab+b2 (5 )x2-6x-9 (6 )a2+a+0.25

  生10:第一题是完全平方式。有三项,其中有两项正且能写成平方的形式,另一项是减去这两个数的积的2倍。

  …… ……

  生11:第四题不是完全平方式,因为中间一项不是两个数的乘积的2倍。

  生12:第五题是完全平方式。三项,有两项能写成平方的形式,另一项也是两个数的积的2倍。

  师:其它同学同意他的意见吗?有没有补充的?

  生13:这一题不是完全平方式,虽然有两部分能写成平方的形式,但这两项不是平方和。

  师:同意他的意见吗?

  生齐答:同意。

  师:因此我们在观察一个多项式是否符合完全平方式的特点时,不仅要找有没有两项能够写成平方的形式,同时还要看这两项的符号是否同为正,更要看另一项是不是这两数的积的2倍。像刚才的第2题和第4题都只满足特征中的一部分。

  引例讲解:将下列各式分解因式。

  1、x2+6x+9 2、4x2-20x+25

  问题:这两题首先怎么分析?

  生14:将9改写成32,6x正好是x与3的乘积的2倍。(学生回答,教师板书)

  生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5

  x2+6x+9=x2+2×x×3+32=(x+3)2

  4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2

  (联系字母表达式用箭头对应表示,加深学生印象。)

  师:由刚才的例子,我们同学能否发现将因式分解为两数的和或差的平方,如何确定是两数的和还是两数的差的平方呢?

  生16:由符号来决定。

  师:能不能具体点。

  生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。

  师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。

  例题1:把25x4+10x2+1分解因式。

  师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?

  生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。(此学生板演,过程略)

  例题2:把-x2-4y2+4xy分解因式。

  师:按照常规我们首先怎么办?

  生齐答:提取负号。〔教师板书:-(x2+4y2-4xy) 〕以下过程学生板演。

  师:如果是这道题:4xy-x2-4y2 怎么分解呢?(教师改变刚才题型)

  提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。

  生18:同样还是将负号提取改变成完全平方式的形式。

  师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。

  练习题:课本p21 练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式

  因式分解公式 篇8

  学习目标

  1、 学会用公式法因式法分解

  2、综合运用提取公式法、公式法分解因式

  学习重难点 重点:

  完全平方公式分解因式.

  难点:综合运用两种公式法因式分解

  自学过程设计

  完全平方公式:

  完全平方公式的逆运用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)

  3.下列因式分解正确的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.计算:20062-40102006+20052=___________________.

  6.若x+y=1,则 x2+xy+ y2的值是_________________.

  想一想

  你还有哪些地方不是很懂?请写出来。

  ____________________________________________________________________________________ 预习展示一:

  1.判别下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  应用探究:

  1、用简便方法计算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y关系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的`,但是这里有用到实际中去的例子,对学生来说会难一些。

  因式分解公式 篇9

  教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

  教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.

  教学过程:

  一、提出问题,得到新知

  观察下列多项式:x24和y225

  学生思考,教师总结:

  (1)它们有两项,且都是两个数的.平方差;(2)会联想到平方差公式.

  公式逆向:a2b2=(a+b)(ab)

  如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

  二、运用公式

  例1:填空

  ①4a2=()2②b2=()2③0.16a4=()2

  ④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

  解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

  ④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

  例2:下列多项式能否用平方差公式进行因式分解

  ①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

  解答:①1.21a2+0.01b2能用

  ②4a2+625b2不能用

  ③16x549y4不能用

  ④4x236y2不能用

  因式分解公式 篇10

  王老师上课时通过学生自己的试算、观察、发现、总结、归纳,得出用平方差公式进行因式分解,这样得出平方差公式后,并且把乘法公式进行对比,通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练。王老师放手让学生探索,促进学生主动发展的教学方法贯穿于这节课的始终。

  从学生的练习情况来看,许多同学都掌握了这节课的知识,整个课堂中,以学生练为主,王老师能敢于创新、敢于探索, 整节课的学习,教师始终是学生学习活动的组织者、指导者和合作者,而学生始终都是一个发现者、探索者,充分发挥他们的学习主体作用。这样大大提高了这节课的效率。

  教师讲课语言简捷、清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入由两种形式的引入,又形象直观地理解了乘法公式的.内在实质。做到以点拨为主的教学。对于公式的牲能严格要求学生理解,并能让学生自己举例符合公式形状的例子,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。效果是比较显著的。

  因式分解公式 篇11

  因式分解是第九章的重难点,公式法是多项式因式中应用最广泛的方法之一,课本中主要介绍了平方差公式和完全平方公式,虽然应用的公式只有平方差公式和完全平方公式,但要灵活应用于解题却不容易,所以我决定一个公式一节课。

  在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做两个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的两个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的`平方差公式——两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。

  本节课主要存在以下几个问题:1灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9(m+n)2-(m-n)2化成(3(m+n))2-(m-n)2然后应用平方差公式这样的题目却无从下手。2因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。

  因式分解公式 篇12

  公式法进行因式分解,虽然应用的公式只是三条,但要灵活应用于解题却不容易。逆用平方差公式进行因式分解相对来说还是稍微简单些。

  逆用平方差公式进行因式分解关键还是要搞清平方差公式(a+b)(a-b)=a2-b2的结构特点:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。

  有了前边学习平方差公式为基础,逆用平方差公式进行因式分解只需要转换思维即可。但对学生来说,还是相当困难的。逆用平方差公式进行因式分解的步骤可分三步:

  1、写成两项平方、差的形式,即找到相当于公式中a、b的项

  2、按公式写出两项积的形式,即因式分解

  3、两项中能合并同类项的各自合并。

  例题及练习的呈现次序尽量本着先易后难的螺旋上升原则。

  1、a、b代表单独的数字或字母,如:(1)m2-9(2)16-y2

  2、a、b代表单独的'数字、字母或只含数字、字母的单项式,

  如:(1)4b2-9c2(2)m2n2-25

  3、a、b代表多项式,如:(1)(2a+b)2-(a-b)2

  (2)-(a+b+c)2+(a-b-c)2

  在此要有“整体思想”的意识,注意:+部分的底数作为一个整体相当于a,-部分的底数作为一个整体相当于b,然后再套用公式。

  尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题:

  1、不会找a、b

  2、思维僵化,对于与公式相同或者相似的式子而需要转化的或者多种公式混合使用的式子难以入手,说明灵活运用公式的能力较差,如要将9-25X2化成32-(5X)2然后应用平方差公式这样的题目却无从下手

  3、因式分解要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)

  因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,相应地对教材内容及教学进度做出调整。

  因式分解公式 篇13

  a2-b2=(a+b)(a-b)

  a2±2ab+b2=(a±b)2

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b)(a2+ab+b2)

  a3±3a2b+3ab2±b2=(a±b)3

  a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

  a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

  a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

  an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)

  说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

  例2分解因式:①64x6-y12②1+x+x2+…+x15

  解析各小题均可套用公式

  解①64x6-y12=(8x3-y6)(8x3+y6)

  =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

  ②1+x+x2+…+x15=

  =(1+x)(1+x2)(1+x4)(1+x8)

  注多项式分解时,先构造公式再分解。

  因式分解公式 篇14

  因式分解的定义

  把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

  因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。

  因式分解常用公式

  1、平方差公式:a2—b2=(a+b)(a—b)。

  2、完全平方公式:a2+2ab+b2=(a+b)2。

  3、立方和公式:a3+b3=(a+b)(a2—ab+b2)。

  4、立方差公式:a3—b3=(a—b)(a2+ab+b2)。

  5、完全立方和公式:a3+3a2b+3ab2+b3=(a+b)3。

  6、完全立方差公式:a3—3a2b+3ab2—b3=(a—b)3。

  7、三项完全平方公式:a2+b2+c2+2ab+2bc+2ac=(a+b+c)2。

  8、三项立方和公式:a3+b3+c3—3abc=(a+b+c)(a2+b2+c2—ab—bc—ac)。

  拓展阅读:因式分解方法

  1、提公因式法

  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

  各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。

  具体方法:在确定公因式前,应从系数和因式两个方面考虑。当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项为负,要提出负号,使括号内的第一项的系数成为正数。提出负号时,多项式的各项都要变号。

  基本步骤:

  (1)找出公因式;

  (2)提公因式并确定另一个因式;

  ①找公因式可按照确定公因式的方法先确定系数再确定字母;

  ②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

  ③提完公因式后,另一因式的项数与原多项式的项数相同。

  口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

  2、公式法

  如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。

  3、十字相乘法

  十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

  口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)

  (1)用十字相乘法分解二次项,得到一个十字相乘图(有两列);

  (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的'十字交叉之积的和等于原式中的dx。

  (3)先以一个字母的一次系数分数常数项;

  (4)再按另一个字母的一次系数进行检验;

  (5)横向相加,纵向相乘。

  4、轮换对称法

  当题目为一个轮换对称式时,可用轮换对称法进行分解。

  5、分组分解法

  通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,这种分解因式的方法叫做分组分解法。能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

  6、拆添项法

  把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解,这种分解因式的方法叫做拆项补项法。要注意,必须在与原多项式相等的原则下进行变形。

  7、配方法

  对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种分解因式的方法叫做配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

【因式分解公式】相关文章:

因式分解公式是什么05-17

数列公式大全03-12

数学计算公式大全03-12

圆锥体积公式04-02

[精选]数列公式大全15篇03-12

数学计算公式大全【优】03-12

经济补偿金计算公式03-09

长方体的表面积公式03-03

分式求导公式运算法则02-28