用数对确定位置

时间:2024-03-13 14:59:37 好文 我要投稿

用数对确定位置

用数对确定位置1

  本节课开始给我的感觉是比较简单的一个内容,可当静下心来细细琢磨教材时,才感觉到本不像我所料。“数对”这个概念对五年级的孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章地轻松接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。

  基于以上分析,本节课的教学过程主要体现在以下几个方面:

  1、用数对确定位置是基于学生已经学习了用第几排第几个描述位置的基础上进行的,我从孩子最熟悉的教室座位出发,唤起了学生用已有知识来确定位置的经验,帮助学生找到新旧知识的连接点。由于观察方位、角度的不同,学生对于刘珈吟同学位置的描述产生了多种方法引起争议,从而产生认知需求:如何才能正确、简明地描述位置呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。

  2、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过小组谈论,学生找到了许多种简单表示第2列第3行的方法,然后让学生汇报交流,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。

  3、在教学中引导学生经历由实物图到方格图的抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了由实物图到方格图的变化过程,渗透了数形结合的思想。

  4、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我从描述班级内刘伽吟同学的`位置开始,从而引起新知识的探讨过程。最后我设计了报数对找位置以及猜一猜的文字游戏也是这一思想的体现。

  通过实际的教学和周主任等各位领导的点评,我认为自己在教学这节课的时候还存在着以下几点缺憾:

  1、备课时总想面面俱到,查阅大量资料,但由于缺少经验对教材的理解不够透彻,有时候不知如何取舍,导致今天的课堂上在教室里找位置时本意是模拟教材情境图才以教师为观察者的,但没有和孩子们强调其实在现实生活中,自己就是观察者。

  2、在渗透“数形结合”的思想时,我直接由实物图过渡到方格图,虽然利用多媒体有个过程的引导,但不如先由实物图到点子图,再把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。我想有这样的演示再填表时效果会更好。

  一节课已经结束了,但我的思考却没有终止,我不停地思考着教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维而不是记住一些知识,知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。

用数对确定位置2

  教学内容

  苏教版课程标准·数学五年级下册第15页。

  教学目标

  1、使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2、使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、设境置疑,产生需要

  1、(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)

  2、设疑:小军的位置没有变,为什么同学们的说法都不一样呢?

  3、你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?

  4、揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)

  [设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]

  二、逐步抽象,掌握方法

  1、列、行的含义和确定第几列、第几行的规则

  (1)认识场景图中的竖排和横排

  ①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。

  ②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。

  (2)认识圆圈图

  ①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)

  ②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)

  (3)认识列

  ①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?

  ②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)

  ③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)

  (4)认识行

  ①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)

  ②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)

  (5)巩固列和行的认识

  刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)

  [设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]

  2、数对的含义和数对表示位置的方法

  (1)学习用第几列第几行表示位置

  ①从圆圈图上,你能找到第1列第1行的位置在哪里吗?

  ②你现在还能用第几列第几行来描述小军的位置吗?

  ③现在同学们都用第4列第3行来表示小军的位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。

  (2)学习用数对表示位置

  ①揭示:小军的.位置是第4列第3行,我们也可以用数对表示。(板书:数对)

  ②猜一猜:既然是数对,你能不能猜一猜有几个数呀?

  ③介绍数对表示位置。

  数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。

  ④想一想:数对(4,3)表示什么意思?

  [设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]

  (3)尝试用数对确定位置

  ①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?

  ②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。

  ③交流:你找的位置是第几列第几行,用数对如何表示?

  ④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?

  ⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。

  [设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]

  三、联系实际,加深理解

  1、用数对表示教室里的位置

  (1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?

  (2)明确教室里的列和行。

  ①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?

  ②列我们已经清楚了,那第1行在哪里呢?第4行呢?

  ③请第1列第1行的同学站起来。

  (3)用数对确定位置。

  ①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?

  ②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。

  ③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?

  ④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。

  [设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]

  2、用数对表示装饰瓷砖的位置

  (1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?

  (2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?

  3、国际象棋记录棋子位置的方法

  (1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)

  (2)介绍国际象棋(课件依次出示)。

  ①国际象棋的棋盘。

  ②国际象棋表示棋盘方格所在列数和行数的方法。

  国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。

  ③国际象棋的棋子。

  (3)交流理解国际象棋记录棋子位置的方法。

  ①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?

  ②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。

  ③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?

  4、用数对表示礼堂中的座位

  (1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?

  (2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?

  (3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?

  [设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]

  四、拓宽视野,全课总结

  1、介绍

  (1)用经线和纬线确定地球上任意一点位置的方法。

  (2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。

  (3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)

  2、全课总结

  (1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。

  (2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。

  [设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]

用数对确定位置3

  学校近期举行“过关课”观摩,我选择的教学内容是苏教版小学数学第九册的“用数对确定位置”。

  在备课中,关于“行”与“列”的定义出现了困惑,请教数学组的其他老师,大家意见不一。老师:日常生活中,我们习惯把走进教室时紧挨着窗的一组设定为第一组,第一个同学就是第1列第1行。

  因此,用生活数学的视角看,我通常从右往左数。所以我认为:小军的位置不一定为第4列第3行。 H老师:教材上写着竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。那么,我个人觉得教材这样规定是和中学数学中的直角坐标系相吻合的,便于中小学数学的衔接。教学时,我们应该研究教材的编排意图,应该从教师站的角度来观察,小军是坐在第4列第3行。 T老师:我上课时是以教室的门为参照物,当所在教室中师生的位置刚好与教材情景图相同时,我得到了小军坐在第4列第3行,当位置与情景图相反时,结果就不同了。

  听了老师们的`发言,感触良多。出现的争议源 于老师们对教材的不同解读。我只有请教《教师用书》,认真拜读小学阶段“确定位置”这一内容,发现一年级用一个“第几”描述物体在直线上的位置,二年级用两个“第几”表示物体在平面上的位置,通过两次教学,学生有了一定的方向感,获得了自然数能表示次序的体验。在此基础上,五年级教学用“数对”确定位置,使学生由原来凭生活经验描述位置上升到用数学方法确定位置,从而发展学生的数学思考,培养空间观念,为六年级教学根据物体的方向和距离来确定物体的位置奠定基础。 因为数对是按列与行确定位置的。

  因此,竖排叫做列,横排叫做行都是约定俗成的规定,而从教材提供的场景图来看,显然要求我们按照H老师的思路来设计我们的教学流程。在教学时,为了避免孩子们出现以上争议,按照H老师的意图,我事先做好。把我左边的、前排的第一位同学的名字放在数对(1 , 1)的位置,全班44位同学按座位正好分成8列,再按照前后的顺序依次把姓名放入表格中(坐标)。先让孩子们观察屏幕,找到自己的位置,说出数对;然后我通过报数对随机点名,还故意报出数对(9 , 2)、(4 , 7),孩子们很快发现这两个是空号,因为我们班没有9列,也没有7行;最后我分别点名数对(3 , 1)(3 , 2)(3 ,3)(3 , 4)(3 , 5)起立,(1 , 3)(2 , 3)(3 ,3)(4 , 3)(5 ,3)起立,让同学们分别思考:看到这些数对,再观察起立的同学,你发现了什么?

  孩子们很容易得出:第一次起立的同学在同一列;第二次的在同一行。不仅避免了争议,还使得每位同学共同参与数学活动,并在活动中轻松、快乐地获得知识。

用数对确定位置4

  这节课是苏教版四年级下册第八单元的内容,这一单元主要是让学生能够理解什么是列和行,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示平面上点的位置(限正整数)。而我这一节是第一课时,这一课时主要是要求学生能够用数对来表示所在位置。

  在此之前,学生已经会有语言文字描述自己在教室中的位置,在日常生活中积累了用类似“第几排第几个”的方式描述物体位置的方法。数对的学习将为学生以后学习直角坐标系打下基础。“数对”这一数学知识对于学生来说比较抽象。

  为了解决这一问题,我注意了以下几点。

  1、本节课的教学先让学生看情境图,说出小军的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据“小军坐在第4组第3个”和“小军坐在第3排第4个”确定小军的位置,有的从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,从而知道了要统一说法。最后让学生说一说你在班级是第几列的小游戏,帮助学生们进一步认识列和行。接着我又要求学生用列和行说一说你在班级的位置和你同桌的位置,通过小游戏帮助学生们加深了对列和行的认识。

  2、接着我又要求学生记录下几个同学的`位置,这是学生们发现如果全部记录下来太长了,时间上也来不及。从而引导学生提出问题有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。然后我要求学生自己想一想设计出一个你认为比较方便的方法,接着再要求学生写在黑板上。最后我在学生设计的基础上用数对表示位置的基本方法,使学生认识到数对中的第一个数表示“列”数,第二个数就表示“行”数以及这个数对的读法。

  3、通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先是结合学生在教室中的位置,通过做游戏,说位置,猜朋友等多种形式,使学生进一步巩固了对行、列和数对含义的认识。接着我又通过小游戏猜猜他是谁,使学生们进一步认识数对,并且明确了要想确定具体的位置必须要同时知道数对中的两个数字。我又安排了找座位的小游戏,让学生们找到自己的位置,其中我准备了一张(6,6)的卡片,然后让学生自己修改卡片,找到自己的位置,从而让学生进一步的认识数对,并且初步体会什么是一一对应。

  尽管我努力想上好这一节课,但仍然有不足之处:

  在第一环节中让学生用自己的方法把方队中小军的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。在处理找座位这一环节的时候,应该着重处理怎么修改就可以找到自己座位的这一环节,让学生能够体会一一对应的。而且在上课的时候总是说得过多,不能放开手让学生去讨论探索,而是把学生牢牢地扎在手中,让学生失去了自主学习的机会。

用数对确定位置5

  前段时间我讲了用”数对确实位置”。“数对”是一个较难理解的知识,通过熟悉的情境便于学生用“第几列,第几行”的方式描述物体的位置。所以在教学时,我就结合本班学生的座位来学习理解数对。开始,我先让学生自己描述自己在班级里的.位置,在描述位置时出现了不同的说法,从而使学生产生正确、简明描述张亮位置的需要,引导出竖排叫做“列”,从左往右数,横排叫做“行”,从前往后数。并进一步向学生介绍这种讲明的表示方法-----用数对确定位置。接下来,通过自己在班级里的位置进行描述练习,巩固所学的知识。

  让学生描述前后左右同学的位置,及观察数对的特点活动,让学生初步感知同一列、同一行物体数对的特点,为下节课学习做好准备。通过大量的联系之后,让学生说说生活中的数对,同时我也准备了很多生活中的数对,一一展示在课件中,与学生分享。使本节课再一次推向高潮,整节课学生合作愉快,讨论积极热烈,因而学生很容易接受并理解用行列描述位置、用数对确定位置的方法。

用数对确定位置6

  一、谈话引入

  师:初次见面,能告诉我你们是哪个班的吗?

  生:五(2)班。

  师:噢,是五年级的二班,对吗?那为什么不老老实实告诉我,是五年级二班,而非要说“五(2)”班?

  生:这样比较简洁。

  生:说五(2)班,别人一听就知道是五年级二班了。

  师:既然这样,那我觉得还可以更简洁一些呢。别人要问我,哪班的——二班!

  生:不行!不行!

  师:怎么啦?不是更简洁了吗?

  生:光说二班,别人怎么知道是哪个年级的二班呢?这样不准确。

  师:那行,要别人问我,哪班的——五!这回总算行了吧。

  生:还是不行。这样说,虽然别人知道你是五年级,可到底是五年级哪个班,别人还是不清楚。

  生:而且,你光说五,别人还不知道究竟是五年级呢,还是五班呢。所以还是不行!

  师:看来,生活中,我们不能为了简洁而简洁,简洁的同时,还得注意什么?

  生:准确!

  (师板书:简洁、准确)

  【赏析:开门见山直入问题的本质:用数对确定位置的优点就是准确、简洁。】

  二、尝试探索

  师:其实,数学也是这样。比如,在二年级时我们已经研究过用“第几排、第几个”等方式来确定人或物体的位置,还记得吗?

  生:记得!

  师:那行。下面的照片中,哪一个是张老师的儿子?能用二年级学的确定位置的方法大胆猜猜看吗?

  【赏析:鼓励学生大胆猜想,发展学生的合情思维。】

  (生猜第3组第2个、第5组第1个、第3行第2个、第4组第5个)

  师:这样看来,光靠猜,要一下子确定张老师儿子的位置,感觉怎么样?

  生:有点困难。

  师:那就给点提示吧,看看会不会好一些。他呀,在第4组——

  (师板书:第4组)

  生:我知道了,是第4组第3个。

  生:不一定,还可以是第4组第5个。

  生:第4组有两个男生,光说第4组还是没法确定,还得看看在第几个。

  (师补充板书:第3个)

  生:找到了,是他!

  师:看来,二年级掌握的方法,还真能帮助我们很快确定一个人的位置。不过,换个角度看看,除了第4组第3个以外,还可以怎么确定他的位置?

  生:第3排第4个。

  师:既然这样的方式已经能够确定位置了,那我们今天还来研究什么呢?

  生:我觉得是不是有比像“第3排第4个,第4组第3个“更简洁的方法,也可以用来确定位置。

  【赏析:有了老师的正确引导,学生的思维深度与广度是不可低估的。】

  师:是呀,真和数学家们想一块儿去了!那你们觉得,会不会有比它更简洁的确定位置的方法呢?如果有,那又会是什么样的呢?下面的时间,我把这一任务留给四人小组,看看能不能集中大家的智慧,创造出一种更简洁,同时也很准确的方法。别忘了,把研究出的方法,记录在自己的作业本上。如能找到不同的方法,都可以记录下来!

  【赏析:抓住合作的最佳时机,这个任务每个学生都有能力参与其中、献计献策。】

  (学生以小组为单位展开研究,时间是5分钟。教师巡视,并将学生中出现的典型方法记录下来,然后板书如下:①4排3个②43③4.3④竖4横3⑤↑4→3⑥4-3⑦4,3)

  三、交流建构

  师:这些方法似乎都挺简洁,到底该选哪一种呢?还是请大家来作评判吧。

  (生觉得前三种方法都不好。听了半天,老师听到的似乎都是批评的声音)

  师:难道,刚才被批评的方法,一点值得肯定的地方都没有吗?

  【赏析:张齐华老师的课堂评价用语一直是我学习的榜样。看似简简单单的一句话可以引导学生养成客观看问题的态度。】

  生:不对,它们好歹都比原来要简洁一些。

  师:这就是一种进步!不过,除了简洁,难道就没有别的什么共同的地方?

  生:哦,它们都有4和3这两个数。

  师:多善于观察!那剩下的几种方法呢?

  生:也都有这两个数。

  师:既然每一个小组都不约而同地保留了这两个数,说明——

  生:这两个数一定很重要。

  生:缺一不可!

  师:说得好!那这里的4和3究竟各表示什么意思呢?为了便于观察和思考,我们可以把这里的每个人都看做一个小圆圈。(出示下图)

  【赏析:较前面出示的“照片”进行了一次初步的抽象。附:抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征。】

  生:就里的4应该表示第4竖排。

  师:数学上,我们把竖着的排叫做列。从左往右起,这里第1列,这是——

  (生答略)

  师:原来,4表示张老师的儿子在第4列。那3呢?

  生:3表示第3横排。

  生:3表示第3行。

  师:是的,数学上,横着的排就叫行。确定行,通常都是从前往后,从下往上。这是第1行,这是——

  (生答略)

  师:现在,确定了第4列,又确定了第3行,能最终确定他的位置吗?

  (师利用课件,用两条直线表示相应的行和列,并相交于一眯,以确定相应的位置。如下图)

  第5行

  第4行

  第3行

  第2行

  第1行

  师:试想,如果只给你第4列,行吗?只给第3行呢?

  (生答略)

  师:看来,行数和列数还真的缺一不可,少了谁,都无法确定他的位置。既然如此,我觉得剩下的几种方法似乎都不错呀。哪种更好呢?

  【赏析:进一步逼近问题的本质——在同一平面内,用行和列两维的参数才能确定一个位置。】

  生:我觉得第4种肯定不行,既有数字又有汉字,看起来就不简洁。

  师:不过,老师很好奇:他们小组明知加上汉字不够简洁,为什么还非得要添上这两个字呢?

  生:我知道!不添上这两个字,那就不知道这里的4和3哪个是行,哪个是列了。

  生:如果这样,那我觉得第6和第7种也都不行。虽然它们都保留了4和3,并且也很简洁,但是,由于它没有说清楚哪个是行,哪个是列,所以很容易混淆。(该生的观点得到了全班多数同学的支持)所以,我觉得还是第5种方法比较好。竖着的箭头表示列,横着的箭头表示行。连在一起就是第4列第3行,而且也很简洁。

  师:同意这位同学观点的请举手。(绝大多数举手表示同意)这么多同学都同意啊?那你们不是成心要为难老师嘛!

  生:为什么?

  师:因为数学家们最终的方法,已经被你们给否定掉了!

  生:啊?

  师:猜猜看,他们最终采纳的可能是其中的哪种方法?

  生:不会是最后一种吧?

  师:真被你给猜中了。那现在,你们觉得这种方法怎么样?

  生:我还是觉得不行,你不说清楚哪个表示列,哪个表示行,别人还是要混淆的。

  【赏析:初生牛犊不怕虎!他们还真敢质疑“真理”。也真是有其“(师)父”必有其“(学)子”呀!】

  师:这么说,连数学家们的观点你们也反驳?

  生:当然了,因为他们的观点是错的!

  师:那你们说该怎么办?数学家就这么定的,你们又不同意。别的方法,你们又觉得不行。

  生:我觉得就可以用第5种,既简洁又准确。

  生:用第7种也行,但必须得加个规定。

  师:什么规定?

  生:得规定哪个数是行数,哪个数是列数,以后遇到这样的情况,都按照这样的规定。

  【赏析:看样子,“真理”是可以在我们身边产生的,只要这里有生成“真理”的“土壤”。】

  师:真是太棒了。你绝对和数学家们心有灵犀!【赏析:这样的表扬就是最高境界的赞赏!它是任何物质奖励都比不上的。也许就是这一句话,此生从此就会爱上数学、爱上思考、大胆创新、创造。可能在多少年之后,在许多物质奖励都已淡去,具体知识也已忘记时,这句话还萦绕在他的耳畔。】告诉大家,其实数学家们选择第7种方法时,也发现了它的漏洞。怎么办呢?后来一讨论,干脆一不做、二不休,给它来个规定:以后凡是像这样用行数和列数来确定一个点的位置的,我们通常都将列数写前面,行数写后面。现在,还会引起误会吗?

  四、练习巩固

  (师出示图片)

  师:小邓和小白是张老师儿子最好的朋友,你能用数对表示他们的位置吗?

  (生答略)

  师:真不错。儿子还有一个要好的朋友叫小中,他的位置如果也用数对表示的话,应该是(5,3)。你知道他在哪儿吗?

  生:他在第5列第3行。

  师:你是怎么找到的?

  生:因为数对前一个数表示列数,后一个数表示行数。

  师:掌握得确实不错。瞧,今天,咱们的座位也排得整整齐齐的,如果让你用数对来表示你自己的位置,行吗?

  ……

  师:看来,自我介绍并不难。能用这样的方式介绍一下你最好的朋友吗?

  生:我最好的朋友,她的数对是(4,2)。

  师:让我也来认识一下你的`朋友,第2列,第4个。认识你很高兴。

  【赏析:教师故意出错,促使学生再一次辨析行与列的规定。这种教学方法不正是阿莫纳什维利在《孩子们,你们好!》中常用的“技俩”吗?教育的智慧是什么?是在用“四两拨千斤”的力量引导学生积极思考、主动探究!】

  生:不对,弄错了,我说的是(4,2),不是(2,4)。

  师:(4,2),(2,4),不都是这两个数吗?怎么就不对了呢?

  生:前面的表示列数,后面的表示行数,所以谁在前谁在后很重要。交换位置后,相应的点就不同了。

  师:看来,以后用数对确定位置时,这一点一定要弄清楚。[师重新找到(4,2)处]真正的朋友原来是你啊!下面,我想再提高要求,我直接报数对,请符合要求的同学迅速起立。看谁的反应最快。(3,1)(3,2)(3,3)(3,4)(3,5)。

  (相应的五名学生一一起立)

  师:奇怪,怎么就齐刷刷地站起来一队?

  【赏析:提醒学生感知其中的规律,促使学生进行归纳总结】

  生:因为你报的数对有规律。

  师:是吗,说来听听。

  生:这五个数对列数都是3,说明他们都在第3列,当然就站起来一队了。

  师:说起来挺容易,如果也让你来出几个数队,你有本事也让一队同学站起来吗?谁来试试?【赏析:张老师这种“亦师亦友”教学风格也是自己所追求的。对于高年级学生来说,这种“激将”法有时可以得到神奇的效果。这不,学生积极性又一次被高动起来。这一“招”在后面又连续用了几次,看样子它真的挺管用的!】

  生:(1,5)(2,5)(3,5)(4,5)(5,5)。

  师:发现了什么?

  生:这次站起来的是一行。

  师:有变化了。能说说为什么吗?

  生:这次的五个数对虽然列数变了,但行数没变,所以站起来的自然就在同一行了。

  师:真不错!不对,张老师觉得这还不算什么。说五个数对,站起来一排。要是我说,我只给一个数对,就可以请一队同学站起来,你们信吗?

  生:不信!

  师:口说无凭,要不试试?【屏幕显示数对:(4,x)】符合要求的同学请站起来。

  (第4列同学陆陆续续站起来。教师面对第一名学生)

  师:奇怪,我上面写(4,1)了没?

  生:没有。

  师:那你站起来干吗?还不坐下去。

  生:不对,(4,x)中的x是一个未知数,既可以表示1,也可以表示2,3.4等,所以我们都站起来了。

  师:瞧老师厉害吧,一个数对,就让一排同学站起来。

  生:不厉害。我也会!

  师:是吗?谁来试试。

  生:(x,4)。

  ……

  生:老师,我还可以让全班同学都站起来。

  师:是吗?越来越厉害了。试试!

  生:(x,x)。

  师:来,符合要求的请起立(全班学生都站了起来)。嗯,让我来看看,当x等于1时,谁谁站起来?【数对为(1,1)的同学举手示意了一下】不错!当x等于2呢?

  【数对为(2,2)的学生也示意了一下,此时,有部分学生开始犹豫,也有学生重新坐了下来】

  师:奇怪,有人开始坐下去了。采访一下,你为什么又不站了?

  【赏析:“采访一下”已成为好几位名师的口头语。这不仅是一句话,也让教师从讲台这个“圣台”上走了下来,走到学生中去,显示着师生的平等地位。】

  生:一开始我觉得(x,x)应该包含所有人,但现在看来,我不算。

  师:不是说字母可以表示任何数吗?你怎么就不算了呢?

  生:字母是可以表示任何数,但我发现,当x等于1时,只有(1,1)可以站,同样,当x等于2、3、4……时,只有(2,2)(3,3)(4,4)……可以站,所以其他人都不能站。

  师:说得有没有道理啊?

  生:有!

  生:我还有补充。虽然字母可以表示任何数,但两个相同的字母只能表示两个相同的数,这样的话,就不是所有人都能站起来了。

  (此时,剩下的同学陆陆续续都坐了下去,只有符合要求的六名学生站着)

  生:我知道了,可以用(x,y)。

  师:这一次,符合要求的请站起来。(所有学生都站了起来)其实,有错误并不重要,重要的是要从错误中吸取教训,并对问题获得更深入的认识。

  【赏析:华应龙老师有一重要的教学主张就是“错误资源化”。张齐华老师这句话值得我们学习、运用。“错误是真理他妈”,我们应该把这样的信息传递给学生,学生才敢大胆地思考、发言、猜想,才能真正把培养学生的创新精神落到实处。一个畏畏缩缩的群体是出不了创新人才的。】

用数对确定位置7

  本节课内容是在学习了用前后、左右、上下等表示物体位置和东西南北等八个方向及认识简单的路线图等知识的基础上进行学习的,是“方向与位置”内容的延续和发展。也是以后进一步学习相关知识的基础。这部分内容对学生认识自己的生活环境、发展空间观念具有重要的作用

  “数对”这一数学知识对于学生来说比较抽象,为了解决这一问题,我注意了以下几点。

  1、本节课的教学是先从认识观察者与被观察者开始的。认识观察者与被观察者是认识那是第一列的基础,也是学生经常发生混淆的地方。因此我在导入时设计了学生介绍第一排同学给我认识的环节。通过学生用方位词向我介绍同学,使学生产生认知的冲突,从而加强了观察角度的认识。事实证明,我这样的教学设计确实对学生认识列产生了深刻的影响。

  2、本节课又通过让学生看军营情境图激起学生的好奇心,通过说出小强的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据已有的生活经验确定小强的位置,有的从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,使学生认识到如果叙述准确了,又显得太罗嗦。有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的'积极性。

  3、在教学中引导学生经历由实物图到方格图的抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了有实物图到点子图的过程。最后我把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。通过电脑的演示使学生亲身感知了由实物图到点子图再到方格图的变化过程,渗透了数形结合的思想。

  4、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过学生小组内的谈论,学生找到了许多中简单表示第3列第2行方法。通过学生的讨论汇报,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。

  5、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我先从班级内的第一排学生开始,然后引导出了军训中的情景图,从而引起了新知识的探讨过程。最后我设计了寻找班级的数对以及猜一猜的文字游戏也是这一思想的体现。

  通过实际的教学,我认为我在教学这节课的时候还存在着以下几点缺憾:

  1、讲完课后总觉的有些面面俱到,没有突出重点。

  2、在小组讨论的时候给学生的时间太少,学生自由活动不够充分。在汇报讨论结果的时候又过于仓促,没有给学生留下自己评价和相互评价的时间。

  3、过于依赖课件,在讲到十几分钟的时候,电脑突然死机使我有些措手不及,上课的思路有些乱了。在处理这个突发事件时,我处理的也有些不当。当时我还没有介绍点子图我不应该叫学生到点子图中找小强的位置。当时我在黑板上已经总结出了“第3列,第2行”,如果这个时候叫学生直接讨论“第3列,第2行”表示方法我想效果会更好,而且能为自己争取到更多的时间。

  一节课已经结束了,但我的思考却没有终止,我不停地思考着我教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维,而不是已记住一些知识为目的。知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。

用数对确定位置8

  一、说教材

  1.教材内容

  《用数对确定位置》是苏教版小学数学四年级下册第八单元P98——100的教学内容。

  2.教材分析

  本课安排的是用从生活中的电影院中位置的确定来引入数对的方法。教材呈现的例题是小军在教室的位置的问题情境,“用数对确定位置”是在第一学段已经学了上下、前后、左右以及第几排第几个的基础上进行学习的,是第一段学习内容的延续和发展。让学生用抽象的数对来表示位置,进一步发展学生空间观念,提高抽象思维能力,为今后进一步学习“图形与坐标”打下重要基础。

  3.教学目标

  我是从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的教学目标

  (1)、知识与技能:使学生在具体情境中认识列、行的含义,知道确定第几列第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  (2)、过程与方法:使学生经历由具体的座位图到用列、行表示的平面图的抽象过程,进一步发展空间观念。

  (3)、情感态度与价值观:使学生感受用数对表示位置的简洁性,体验数学与生活的密切联系,进一步增强用数学眼光观察生活的意识。

  4.教学重、难点

  从学生的知识结构和年龄特征出发,我理解本课的

  教学重点:初步理解并掌握用数对表示位置的方法。

  教学难点:能正确使用数对表示具体情境中物体的位置。

  二、说教法、学法

  1.教法:

  本课时主要采用“探究式教学法”,辅以“情境教学法”进行教学。教学中,从生活中常见的电影院导入新课,借助找位置的实际问题,让学生逐步形成如何去确定位置,再让他们小组交流,从中巩固新知,学会写数对,从而发展学生的数学技能。

  2.学法:

  学生作为主体,在学习过程中的学生的参与状态和参与度是决定学习效果的重要因素。因此在学法的选择上体现出“玩中学——学中玩——在合作交流中学——学后交流合作”的思想。

  三、说教学过程

  教学过程:

  (一)、导入

  提问:《题西林壁》这首诗学过吗?为什么诗人不识庐山真面目?

  指出:观察物体角度很重要。中国有句俗话“当局者迷,旁观者清”,就是告诉我们要以旁观者、局外人的视角观察人、事、物,才能更准确。

  (出示电影院的座位图)提问:同学们,你们去看过电影吗?这是电影院一个厅的平面图,竖着的一排叫什么?横着的一排呢?(板书:竖排叫列,横排叫行)

  老师想要观察这个厅所有的观众,应该站在什么位置?(银幕的位置)

  指出:会选角度观察,我们今天的课就成功了一半。下面就进入我们的数学之旅吧!

  (二)、认识数对

  1、游戏——寻找幸运观众

  (1)给出任务:电影院今天搞活动准备在这个电影院里选择三位观众免费观看,已找出两位,剩下的一位,让学生自己寻找。

  (2)寻找幸运观众

  第一步:漫无目的寻找。

  第二步:根据提示寻找。教师给出提示(3,2),学生根据提示指一指幸运观众可能在的`位置,教师用投影显示8个可能的位置。

  第三步:根据视角寻找。进一步缩小范围,点击鼠标,寻找出幸运观众。

  提问:为什么一个提示出示8种可能?(不知道哪个数据表示行或列,也不知道是从哪边开始数起的),你认为观察者在哪?根据观察者的视角和(3,2),你认为可能在哪?

  (3)理解数对的含义。

  提问:(3,2)表示什么意思?(板书:第3列,第2行)列是从观察者的哪边开始数起?行呢?(板书:从左往右从前往后)

  指出:像这样用一组数表示物体位置的方法就是我们今天研究的内容。(板书课题:用数对表示物体位置)

  提问:你觉得用数对表示物体的位置有什么好处?(简洁)能不能将逗号省去?能不能将()省去?(逗号将列和行分开,括号是数对的特征)

  (4)运用数对

  用数对表示出前2位幸运观众的位置。用数对表示自己的位置

  提问:以谁的视角来观察,哪边是第一列?(选5个同学,其他同学用手势表示正误,)

  提问:比较一下,你和你的同桌写出的数对有什么相同点?为什么?

  (三)、用数对确定位置

  1、★出示“小军班上的座位表”。(表略)

  师:你能说出小军的位置吗?

  生:小军在第4列第3行

  小结:一起数在第四列,第三行。用数对表示,小军的位置是(4,3)。

  2、★师:如果我们把每个同学的位置看成一个圈,就成了这样的图形。

  (多媒体显示,把刚才的图片抽象化,每个同学只用一个圈表示)

  师:小军在班上的好朋友小林坐在教室的这个位置,你能用数对表示出小林的位置吗?谁来说一说师:这些实际上是我们数学教学用书上的,实际上我们生活中也有很多关于数对的问题

  (四)、巩固练习

  1、课件出示练习三第2题:

  (1)小明家刚买了新房子,正在装修,这是他家厨房一面墙上的瓷砖,请用数对表示四块装饰瓷砖的位置。

  (2)各自在书上填写后指名汇报,全班交流。

  (3)讨论:你发现表示这两块瓷砖位置的数对有什么特点吗?(注:两块出示后讨论,再出示第3块讨论)

  在同一列的瓷砖,数对中的第一个数相同在同一行的瓷砖数对中的第二个数相同

  2、课件出示练习三第3题

  学校要举办艺术节,准备放置一些花来装饰一下我们的校园,我们一起去看看吧。

  (1)写数对:能用数对表示出这些盆花的位置吗?各自在书本上填写后指名汇报,全班交流。

  (2)找规律:观察这些盆花的位置,你发现了什么?先让学生在小组中说说自己的发现,再组织全班交流

  3、学习了这么长时间,同学们也有点累了,我们一起来玩个找字的游戏,好吗?

  出示题目以及游戏规则,玩四次。指名交流思考题,安排位子

  你知道吗,介绍笛卡尔如何想到数对。

  拓展延伸,拓展到三维的角度

  (五)、全课总结

  这节课大家学习的很棒,摩斯侦探想再考考大家,你们有信心用今天学习的数对的知识找出摩斯密码下的秘密吗?下课了。

  四、说板书设计

  板书主要就是从问题想起的策略的一个思考过程,比较清晰,简单,能突出说出这节课的重点

  用数对确定位置

  竖排叫列从前往后数对。

  横排叫行从左往右(4,3)

  五、总结

  以上是我对本课教材教学以及教学方法的预设。基于对本课的设计理解,我认为我们应从数学思考、数学意识的层次上解读用数对确定位置,而不能将此类课型简单地的教学。

  学生从生活实际慢慢的到需要引入数对来确定位置,比较自然,学生在学习时也是一个循序渐进的过程。

用数对确定位置9

  教学目标

  1 知识与技能:

  让学生结合具体情境认识行与列,初步理解数对的含义;

  能在具体情境中用数对表示物体的位置。

  2过程与方法:

  使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

  3 情感态度与价值观 :

  渗透“数形结合”的思想,发展学生的空间观念。

  体会生活中处处有数学,产生对数学的亲切感。

  教学重难点

  1 教学重点

  经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

  2 教学难点

  灵活运用数对知识解决实际问题。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,激趣导入

  【师】课件出示多媒体教室上课情境图。

  【师】这是上多媒体课的情景,每一个同学都有一个单独桌子,教室的前面 是一个控制台,控制台的左下方是一个座位表。如果哪个同学有问题要问老师,只要按一下秘书桌上的按钮,座位表上相应位置的红灯就会点亮,老师就知道谁要发言。

  【师】播放动画。这时,红灯亮了,是谁提问了呢?

  【生】(看课件中红灯亮的位置)是张亮在提问。

  【师】那同学们,你们想知道哪一位同学是张亮吗?那们就来找一找吧。

  这节课我们就一起来进一步学习“确定位置”。

  【板书】第二章 位置 第1节 确定位置

  2 探索新知

  [1]寻找张亮的位置

  【师】课件展示多媒体教室全景大图,请同学们仔细研究座位表和同学们座位间的关系,找一找哪一位同学是张亮。可以看教材19页,在教材上标出张亮同学的位置。

  【生】在教材上寻找张亮的位置。

  【师】说一说,你是怎么知道这就是张亮呢?

  【生】红灯亮的是第二列第三行,学生座位中第二列第行的就是张亮。

  [2]明确行列的含义

  【师】张亮是在第二列第三行吗?

  【课件展示】同在数学上竖排叫“列”,横排叫“行”。 “列”习惯上从左往右数,依次为第1列、第2列…… “行”习惯上从前往后数,依次为第1行、第2行……

  【师】同学们,张亮是在第二列第三行吗?

  【生】是。

  【板书】(第2列、第3行)

  [3]认识数对

  【师】为了表示方便,表示位置我们还可以用“数对”来表示。括号中第一个数字表示列,第二个数字表示行,中间用逗号隔开。张亮在第2列、第3行的位置,可以用数对(2,3)表示。

  【师】根据描述的习惯,你认为括号里这两个数各表示什么?

  【生】括号里的第一个数表示第几列,第二个数表示第几行。

  【板书】(2,3)

  [4]用数对表示位置

  【师】你能用数对来表示王艳同学的位置吗?

  【生】王艳的位置用数对表示是(3,4)。

  【师】括号里的3和4表示什么呢?

  【生】3表示王艳在第三列,4表示在第四行。

  【师】你们能不能用数对表示赵雪的位置呢?

  【生】赵雪在第四列第三行,用数对表示是(4,3)。

  【师】括号里的4和3表示什么呢?

  【生】4表示赵雪在第四列,3表示在第三行。

  【师】赵雪的位置能用数对(3,4)表示吗?

  【生】不能,赵雪的`位置在第四列第三行,而第三列第四行的位置是王艳。

  【师】看来,数对(3,4)和(4,3)不仅是数的顺序不同,它们表示的位置也不同,所以我们用数对表示位置的时候,一定要遵循规则,数对前面的数字表示——列,后面的数字表示——行。

  巩固练习:请同学们利用刚才所学的知识写一写孙芳,周明,李小冬的位置。

  指定一个学生上白板上写。

  [5]巩固确定位置的方法

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、老师说数对,学生根据数对找出相应的同学。

  [6]巩固拓展

  【师】生活中还有很多用两个数来确定位置的情况,你知道有哪些吗?

  【生】举生活中用数对确定位置的例子。

  【课件展示】1、楼宇案例门上表示几层几号的按钮。

  2、电影院里的座位——几排几号

  3、象棋棋盘

  [7] 课堂练习

  1、用数对(3,2)表示。你能用数对表示其他几个图案的位置吗?

  参考答案:

  苹果用数对表示(4,3);西瓜用数对表示(2,1);香蕉用数对表示(4,1);樱桃用数对表示(2,3)。

  2、下图是国际象棋。

  (1)她是怎样确定棋子位置的?

  (2)你能像她那样说一说每个棋子的位置吗?

  参考答案:白方的“王”从左向右数在“e”列,从下往上数在“1”行,所以用数对表示为(e,1)。

  [8]课堂小结(PPT投影)

  【师】同学们,这节课我们学习了确定物体位置的方法,相信同学们一定大有收获,谁来说一下收获呢?

  【生】我学会了怎样用数对表示位置。

  我知道了数对中第一个数表示列,第二个数表示行。

  我知道竖排叫列,一般从左往右数,横排叫行,一般从前往后数。

  板书

  第二章 位置 第1节 确定位置

  (第2列、第3行)——(2,3)

  数对 (3,4)

  (4,3)

  列 行

  竖排叫列,一般从左往右数

  横排叫行,一般从前往后数

用数对确定位置10

  教学内容:人教版《义务教育教科书——数学》五年级上册第二单元第19页例1及相关内容。

  教材分析:

  “位置”的内容属于“图形与几何”领域的内容,是应学段目标“探索一些图形的位置关系,了解确定物体位置的方法”的要求而设计编排的。本单元学习的是在具体的情境中根据行与列这两个因素来确定物体的位置,继而学习用数对表示具体情境中物体的位置。同时,学会在方格纸上根据数对确定物体的位置。

  教学目标:

  1.知道能用两个数据确定物体在平面中的位置,使学生在具体的情境中认识列、行的含义,知道确定第几行、第几列的规则。

  2.把教室情境和方格图相结合,理解数对的含义,体会一一对应,渗透“数形结合”、“函数”的思想,发展空间观念。

  3.培养学生的观察、迁移、推理、概括等能力。

  教学重点:

  理解数对的意义,会用数对确定具体物体的位置。

  教学难点:

  把握在生活情境中确定位置的数学方法,理解起始列、行的含义。

  教学过程:

  一、从生活层面,直观认识列、行

  1.复习导入,在冲突中引出新知,初步感知列、行。

  师:(请张明同学起立)你能用学过的知识说说这位同学在班中坐的位置吗?

  师:同样是这位同学,有多种方法表达他的位置,感觉怎么样?

  师:互相交流时很不方便。正因为如此,需要统一。

  师:结合实际生活习惯,我总喜欢先说竖的,再说横的,这个“竖”在数学中称为“列”,“横”在数学中称为“行”,所以“先列后行”。

  师:从观察者的角度出发,现在老师作为观察者,确定第几列,一般从左往右数,第1列、第2列、……确定第几行,一般从前往后数,第1行、第2行、……

  2.用列行说说自己的位置。

  师:你现在能用列行说说自己的位置了吗?

  生:我在第3列,第1行。

  师:我们把第3列看作竖的一条线,第1行看作横的一条线,这位同学的位置就在竖横这两条线的交叉点上。

  同桌互相说说自己的位置。

  【设计意图:利用教室里现有的资源,从学生生活实际出发,从旧知中发现矛盾冲突,产生解决问题的需求,自然引出新知,沟通新知识与学生已有经验之间的关系。】

  二、从图像层面,抽象认识列、行

  1.把教室座位投影到屏幕上。

  师:刚才老师是观察者,我观察你们,那你们想不想做回 观察者?

  师:满足大家的要求,现在你们和老师一样,也是观察者了。

  师:找一找,第一列在哪里?

  师:第一行呢?

  师:张明同学的位置怎么说?和我们刚才讲的一样吗?(请这位同学起立)

  师:如果我们把第三列看作竖的一条线,第1行看作横的一条线,同学们想象一下,张明的位置在这两条线的什么位置上?(张明的'位置就在竖横这两条线的交叉点上。)

  师:你自己的位置会在哪两条线的交点上呢?

  师:由此你想象咱们整个班上每个同学的位置分别在哪个点上?闭上眼睛想想全班同学的座位用图简洁地表示出来是什么样的。

  2.从座位图到点子图,到方格图。

  课件出示座位图变点子图,变方格图。

  师:大家的位置都在这个上面了,老师是观察者,也想在这个图上,我在哪里呢?(屏幕出示0点,并完善方格图。)

  师:在这张方格图中,0即表示列的起始,也表示行的起始,可以叫它是第0列,这是第0行。(屏幕演示)

  师:现在你还能找到第1列、第1行吗?

  师:第1列、第1行没有变。

  【设计意图:从座位图到点子图,再到方格图,一步步深入,在抽象情境中学习行与列,重点介绍起始行、起始列,在比较中弄清起始行和起始列与第一行和第一列的不同,为以后学习坐标做好铺垫。】

  三、从数学层面,形式认识数对

  1.初步学习数对。

  师:张明同学在第3列第1行,你现在还能找到他吗?

  请一生上来指,然后屏幕显示“张明,第3列第1行”。

  师:这么简洁的方格图上写那么多汉字,好不雅观啊!能不能把这文字语言改成数学语

  言呢?让它变得更简洁。请在这张纸的反面试试。

  学生自由写。师巡视,请代表性的学生写到黑板上。

  师:也就是(3,1)只能表示这一个同学的位置,能不能表示其他同学的位置?这个同学的位置能不能用其他数对表示?也只能用(3,1)表示。

  2.进一步学习,感悟数对特点。

  在方格纸上找两个点,请生用数对表示(2,5)、(5,2)。边说边请相应同学站起来。

  师:大家看,两个相同的数字,但为什么表示的位置不一样呢?

  师:数对是一组有序的数,顺序不同,表示的位置就不同。

  师:接下来老师报数对,是你你就站起来,看谁反应速度快。(3,1)、(3,2)、(3,3)、……师:哇,一列同学站起来了!

  【设计意图:抽象与形象相结合,感悟一一对应思想。在具体情境中感悟数对“能确定物体的位置”这个作用。在游戏中,多次变化,体会数对的特点,渗透函数思想。】

  四、数对在生活中应用

  1.介绍笛卡尔。

  2.围棋盘。

  【设计意图:介绍生活中的例子,一方面让学生进一步感悟数对确定位置的作用,和在现实生活中的应用;另一方面拓宽学生的视野。】

  五、拓展练习

  1.画一画。

  (1)A(2,5)、B(2,3)、C(4,3)。

  (2)师:把这个三角形向右平移4格,请你在方格纸上画出来,并用数对表示平移后图形顶点的位置。

  (3)师:如果上下平移,什么不会变?

  【设计意图:数形结合,在方格图中进一步感悟数对的特点,渗透函数思想,培养学生的观察、迁移能力,发展空间观念。为初中学习坐标系铺垫。】

  六、总结延伸

  师:愉快的一节课很快过去了,你有什么收获?我们认识了数对,知道了可以用列与行这两个因素来确定物体的位置。今后我们还将继续学习其他确定物体位置的方法。

  教学反思:

  本节课体现了以下几点:

  1、充分利用现有的教学资源。

  2、在认知冲突中感受学习新知的必要性。

  3、初步感知直角坐标系的思想和方法。

  4、适时渗透数形结合的思想和方法,感悟数对与位置的一一对应思想。

  数形结合的思想,在本课中体现得较多。通过形来研究数的特点,通过数来呈现物体的位置,在方格纸和用数对表示点的位置的方法之间架起了数与形的桥梁,使学生初步体会数形结合的思想,这种数形结合的思想也是今后研究和学习数学的重要手段。

  培养学生的数学应用意识创设思维问题情境激发数学学习兴趣浅谈如何让学生喜欢数学。

用数对确定位置11

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是()。

  3、()和()在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,y可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读“你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

  第三单元公倍数和公因数

  第一课时:公倍数和最小公倍数

  教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的`公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

  教学过程:

  一、经历操作活动,认识公倍数

  1、操作活动。

  提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生独立活动后指名在实物展示台上铺一铺。

  提问:通过刚才的活动,你们发现了什么?

  引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?

  ⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

  2、想像延伸。

  提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  3、揭示概念。

  讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。

  引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索。

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ②先找出6的倍数,再从6的倍数中找出9的倍数。

  ③先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:②和③有什么相同的地方?哪一种方法简捷些?

  2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。

  3、用集合图表示。

  指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、完成“练一练”

  完成后交流:2和5的公倍数有什么特点?

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、练习四第1题。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提呢?

  2、练习四第2题。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、练习四第3题。

  集体交流时说说是怎样找的。

  四、全课小结

用数对确定位置12

  1、关注学情,教而有效

  认知教育学家奥苏贝尔说过:“如果我不得不把教育心理学的所有内容简约成一条原理的话,我会说:影响学习的最重要的因素是学生已经知道了什么,弄清了这一点后,再进行相应的教学。”的确,有效的数学教学应该基于学生的已有经验。唤醒学生原有知识,了解学生的生活经验和已有知识背景,是学生学习的基础。因此我在教学时,首先通过让学生自己来描述赵晨的位置,激活学生头脑中已有的描述物体位置的经验,然后通过交流评价,自己认识到这些方法的不足,引发学生产生用统一、简明的方式来确定位置的需求,体会学习新知的必要性。

  2、巧设平台,彰显个性

  学习是一种个性化行动。作为教师,应当在课堂教学环境中创设一个有利于张扬学生个性的“场所”,让学生的主动性和创造性得到尽情释放。在让学生以赵晨的位置“第3列第2行”为例,根据数学的简明性特点和符号化特点自己创造更简洁的表示方法的环节中,为学生提供了自主思考的空间,学生的思想无拘无束,创新灵感、创新思维不断涌现,课堂真正成为了他们发挥自己聪明才智的乐园。然后再针对学生自己创造的方法,通过师生互评、生生互评,让学生产生矛盾冲突,抽取共性,从而产生确定位置的方式——数对。可以说数学的特点促进了数对的产生,数对的产生也符合数学的特点。再通过对“数对”名字的分析,使学生对于“一对数”确定位置的`理解也更加清晰了。

  3、知趣交融,快乐求学

  心理实验表明,学生经过20至30分钟紧张的新课学习后,会感到疲劳,学习兴趣降低,学困生表现尤为明显。而“兴趣是最好的老师”,为了继续保持学生积极的学习状态,教师要特别注意练习的设计。“找好朋友”的练习紧密联系生活实际,而且形式活泼有趣,极大调动起了学生学习的兴趣。学生在这一活动中,动眼看,动耳听,动脑想,动口读,动手找,调动了多种感官参与学习。通过这个形式新颖有趣的练习,变学生被动学习为主动参与,既增大了练习面,又使全体学生主动参与。

  4、研究探索,发展思维

  本课有两大主线贯穿始终:一条是图例的抽象和演变:由实物图、到点子图再到方格图,这一抽象的过程细腻、清晰,借助“数形结合”的方式很好地渗透了“坐标”这一较难理解的数学知识,为学生的后续学习做好铺垫。另一条线是确定位置的方法:由不同的描述方法过渡到列与行的方法最后通过对比淘汰产生数对的方法,这一表达方式逐步递进、简化、抽象,都使学生对数学的简捷性和抽象性有了深刻的感受和体会。课堂中,两大主线的层层递进与发展,把本课数学知识和思想的产生与发展过程展现得淋漓尽致,教师引导学生进行前后对比反思,及时提升学生的认识,培养反思习惯和能力。通过学习,学生不但熟练地掌握了数对知识,而且真正感受到了数学能够把复杂的问题简单化,也真正体会到了数学符号的简洁清晰,最重要的是学生真正亲身经历了数学知识、数学思想的形成过程,这些都为学生的全面发展、长远发展打下了良好基础。

  5、缺点与不足

  常言道:教学永远是一门有遗憾的艺术。的确,尽管在不断的雕琢中我努力追求完美,但几缕缺失时常萦绕脑际,难以释怀。

  (1)在第一环节中让学生用自己的方法把方队中赵晨的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。

  (2)这节课不仅仅要教会学生用“数对”的方法来表示位置,更重要的是让学生在解决问题中,构建“数对”模型,经历用简洁的数学符号确定位置这一抽象的过程,这才是本课的重点。学生在经历了由文字描述到符号表达,由繁到简的再创造过程中,进一步感受到了数学的抽象化、符号化。这些方面本课都体现的比较充分,但在让学生感知“数对”确定物体位置,要从两个维度来考虑的数学本质的同时,对数对的有序性体现的不够充分。

  (3)此外,联系实际举例:说说生活中哪些地方用到了数对思想,学生非常缺少这方面的经验,往往举不出恰当的例子,是否能改为先介绍“地球上经纬线知识”,课后再让学生在生活中寻找应用了数对思想确定位置实例,也在思考中。

用数对确定位置13

  《用数对确定位置》知识点不多,对于五年级的学生来说是比较简单的,那么如何使教学的内容更丰富,在课堂上激发学生学习的需要,使学生产生探究的欲望,便成了我的主要思考方向。

  学生在一年级已学习了用“第几”描述物体在某个方向上的位置,在二年级时学习了用类似“第几排第几个”的方式描述物体在平面上的位置,已经初步获得了用自然数表示位置的经验。因此,在导入环节,我出示了小军班级的座位图后,先向学生提出要求:你能用以前所学过的知识告诉我小军的位置在哪里吗?你是怎么看的呢?学生在描述时出现了两种不同的说法:“第4列第3个”、“第3排第4个”。小军的位置没变,但同学们看的角度和方法不同,所以产生了不同的说法,从而使学生产生正确、简明描述小军位置的需要。学生在生活中已具备了确定列和行的经验,因此,便很顺利地得出竖排叫做列,从左往右数,横排叫做行,从前往后数,小军是在第4列第3行。

  知道了确定第几列、第几行的规则后,再将座位的场景加以抽象,用圆圈表示实际场景中不同的座位,详细地标出每一列每一行,让学生在圆圈图中找出小军的位置,提高了学生的抽象思维能力。同时,向学生介绍表示位置还可以用更简明的表示方法——用数对确定位置。学生在具体情境中学习用数对确定位置,并理解用数对表示物体位置的方法,第一个数表示第几列,第二个数表示第几行。

  当学生学会从平面图上用数对确定位置后,我又引导学生回归到生活中,在教室里,找到自己的位置在第几列第几行。通过游戏的形式,使学生认识教室里的列和行,并学会描述自己的位置和好朋友的位置。再通过对一组数对的观察,认识到同一列的第一个数字相同,同一行的第二个数字相同。(5,y)表示第5列的所有同学,(x,2)表示第二行的所有同学。当让学生用一个数对表示全班同学的'位置时,学生出现了以下的数对:(x,y)、(y、y)、(x、x),通过举例,若y=8时,教室里没有(8,8)这个座位,使学生形象深刻地理解了只能用两不同的字母表示,才能表示全班同学的位置。

  练习中,练习三的第2题,当学生完成数对后,我有目的地引导:“观察同列或同一行的两个数对,你有什么发现?”问题具有针对性后,学生都能从同列或同一行的数对去观察、思考,并发现规律。练习三的第3题,让学生讨论:“你发现花色地砖位置的规律了吗?”学生讨论地看似比较热烈,但指名回答时,学生却不敢发言了,在我的再三鼓动下,有几位同学站起来说出了他们的发现:一是同一列的第一个数字相同,同一行的第二个数字相同;二是数字中的奇偶数关系;三是花色地砖第3列1块,第5列2块,第7列3块,第9列2块,第11列1块,第2行1块,第3行2块,第4行3块,第5行2块,第6行1块。第3个发现也就是左右、上下都是对称的。

用数对确定位置14

  执教:山东省平原县实验小学 王艺伟

  评析:山东省平原县教研室 王晓华

  教学内容:青岛版教材六年制五年级下册第51—53页。

  教学目标:1、结合生活情境,使学生体验用数对确定位置的必要性和简洁性。

  2、在具体情境中,能用数对表示位置,根据数对确定位置,并能在方格图中根据数对确定位置。

  3、引导学生经历由实物到方格图的抽象过程,渗透坐标的思想,发展学生的空间观念。

  4、体验确定物体位置与生活的联系。

  教学重点:用数对表示位置。

  教学难点:在方格图中用数对确定位置。

  教具准备:多媒体课件、练习纸、方格纸、写有数对的纸条。

  教学过程:

  活动铺垫,认识数对:

  (一)明确行、列的排列规则:

  1、师:上课了,老师站在了讲台中央,我这是描述了自己的什么?

  生:老师的位置。(师板书:位置)

  师:以刚才回答问题的这位同学为例,站在同学们的角度观察,谁能帮他介绍一下位置?

  生1:从左数第5排,从前数第4个。

  生2:从右数第2组,从后数第3个。

  ……

  师:同学们讲的“排”、“组”指的是什么?第4个、第3个又是什么意思?

  生1:竖着看为一排,横着看从前往后数是第4个(学生边指边说)。

  生2:这样竖着看是一组,横着看从后往前数第3个。

  师:在数学上,我们一般把一竖排称作一列,把一横排称作一行。(板书:列 行)

  师:这位同学的位置一定,却有不同的说法,一一解释很不方便,这就需要表示位置时有一个统一标准。通常确定第几列,一般从左往右数,确定第几行,一般从前往后数。(师板书:从左往右、从前往后)那么站在同学们的角度观察,我们的座次哪是一列?哪是一行?哪是第一列?哪是第一行?

  现在请第2列的同学起立,再请第4行的同学起立,哪个同学站了两次?这为什么?(因为他既站在第2列,又站在第4行。)

  如果再请第3列和第2行的同学起立,谁又会站两次?为什么?(因为他既站在第3列,又站在第2行。)

  师:按这样的列、行排列规则,第一位回答问题的同学的位置在哪儿呢?

  生:他坐在第5列第4行。

  {评析:由学生的生活经验来描述位置,说法不一,感到不便,这时介绍行、列的规定,自然巧妙,使学生感受到学习的必要性。}

  2、师出示课本51页情境图:

  师:去年暑假,我们学校组织了丰富多彩的夏令营活动,其中少年军校吸引了许多同学参加。瞧,他们正在进行队列训练呢!

  站在同学们的角度观察,哪是第一列?哪是第一行?你是怎样确定的?

  生:从左数第一竖排是第一列,从前数第一横排是第一行。(学生上台边指边介绍)

  师:谁能说出小强的位置?小亮的呢?

  生1:小强站在第3列第2行。(师板书)

  生2:小刚站在第2列第4行。(师板书)

  (评析:利用军校夏令营队列训练这一学生感兴趣的情景为学习的载体,进一步激发了学生的学习欲望)

  抽象位置图,认识数对:

  1、师:如果用一个圆点代表一个小战士,刚才的队列图就可以用这样的点子图来表示 。你认为这样的表示方法有什么好处?

  生1:这样表示更简单了。

  生2:这样比刚才更清楚了,很容易的数出了几行几列。

  生3:……

  师:你能在这幅图中找到小强的位置吗?

  小亮在第4列第3行,你能找到他吗?(生上台按要求分别指出各自的位置)

  同学们能说出其它几位同学的'位置吗?谁愿意上台帮老师做一下记录?

  (学生说出其它几个同学的位置,一同学在黑板上做记录,很明显同学们说得快,他记录得慢,表现出着急无措的样子。)

  师:你在记录时有什么感受?

  生:这样表示同学们在队列中的位置太麻烦了,如果有种简便的表示方法就更好了!

  (评析:通过说、写这一过程使学生感到文字表述的不便,促使学生产生探求表述简便形式的动力)

  2、师:是啊!数学的一大优点是简练。我们能否把表示位置的的方法也变得简练些呢?请同学们在小组内讨论:如何用简练的方法表示小强的位置?组长负责做好记录。

  (小组讨论后交流)

  生1:可以用“第3列第2行”表示。

  生2:也可以用“3列2行”来表示。

  生3:用“3L2H”表示,L表示第几列,H表示第几行。

  姓名 列数 行数

  小强 3 2

  生4:我用表格来表示。

  生5:用3 2表示更简单。

  生6:用3 2表示不行,别人会以为是32。

  生7:那在3和2之间加个“、”。

  生8:不行,别人会以为是3.2。

  生9:可以在3和2之间画条竖线或画条横线,把“、”换成“,”也行。

  生10:我同意这个同学的做法,用3,2表示小强的位置很简练。

  ……

  师:小强的位置可以用两个数来表示,3和2之间用逗号隔开,并用括号括起来,写成(3,2),数学上把这一对数称为数对,其中第一个数表示的是第几列,第2个数表示的是第几行。

  3、导出课题:

  师:小强的位置可以用2个数,也就是数对表示出来,这就是我们今天研究的用数对确定位置。(板书课题:用数对确定位置)

  (评析:让学生经历主动探索、合作研究表示位置的过程,在此基础上老师再介绍数对的表示方法,培养了学生探究能力和创新意识。这是本节课不可或却的环节。教师的施教恰倒好处。)

  用数对确定位置:

  (一)用数对表示位置

  1、师:怎样用数对表示小刚的位置?

  你还能用数对表示谁的位置?

  小明的位置用数对(5,5)表示,你能找到他吗?

  师:看来,我们用数对可以准确而简练的表示物体的位置。

  师:同学们自己的位置也能用数对表示出来吗?请你在练习纸上写上表示自己座次位置的数对,并在反面写上自己的名字。

  (学生自己在练习纸上书写,师收集起来,全班交流。)

  先读学生姓名,学生说出表示自己位置的数对,全班同学判断是否正确。

  先读数对,学生判断是哪位同学,并验证与书写的姓名是否相符。

  根据数对确定位置:

  师:下面我们来做个小游戏,名字叫“找位置”。老师给每位同学发一个写有数对的纸条,同学们先仔细想一想,这个数对表示的位置在哪里?然后收拾好自己的东西,老师说开始后,快速走到你的新位置上坐好,比一比,谁的动作最迅速!

  (学生根据数对找自己的新位置,但会有3位同学遇到麻烦,因为他们

用数对确定位置15

  第一,依据标准说理念:

  体现以学生为主体,教师是学生的组织者、引导者、合作者。在整个教学过程中,学生始终在动手实践,自主探究中学习知识,学生乐学,爱学,使学生从学会变成“我要学,我会学”,激发学生的学习热情,培养其探究能力和自主学习的意识。

  第二,联系实际说教材:

  《用数对确定位置》一课是青岛版教材五年级下册第四单元第一个窗口的内容。《数学课程标准》中将“空间与图形”安排为一个重要的学习领域,强调发展学生的空间观念和空间的想象能力。本节课是在第一学段学习了用前后、左右、上下等表示物体的位置和东西南北等八个方位及认识简单的路线图等知识的基础上进行学习的,是第一学段“方向与位置”内容的延续和发展,也是第三学段进一步学习相关知识的基础。这部分内容对学生认识自己的生活环境、发展空间观念具有重要的作用。课程标准要求:在具体情境中,能用数对来表示位置,并能在方格纸上用数对确定位置。

  根据课程标准、教材内容以及学生的认知规律,我制定了以下教学目标:

  1、知识目标:使学生在具体的情景中认识列、行的含义,知道确定第几行、第几列的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2、能力目标:使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3、情感目标:使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  依据以上教学目标,确定本节课的教学重点:

  1、在现实情境中感受确定物体位置的多种方式、方法。

  2、突出在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。

  教学难点:灵活应用不同的方式确定物体的位置。

  为了更好的完成教学任务,发展学生能力,我准备了:多媒体课件、方格纸、水彩笔等教具。学生准备:铅笔、练习本等学习用具。

  第三、立足发展说策略。

  教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程。”学生是学习的主体。因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学习横积极主动地参与教学的全过程。

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新课标数学课程的基本理念。因此,我在讲求教法的同时,更重视对学法的指导。我把学法确定为:观察法、探索法、讨论法等。

  第四、情境互动说流程。

  “将课堂还给学生,让课堂焕发生命的活力”“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学流程设计上力求充分体现“以学生发展为本”的教学理念,我将整个教学过程安排为四个环节:

  第一环节:谈话式情境导入。

  通过我和学生“握手交朋友”这一细节拉近师生之间的距离,从而引出让学生介绍自己的好朋友(提出一个要求:只说位置,不说名字,让大家猜一猜。)其目的是激发学生学习新知的欲望,从而顺利的拉开本节课的序幕,并揭示本课的课题:确定位置。(板书:确定位置)

  第二环节:合作探究,体验新知。

  新课程倡导:自主探究,动手操作、合作交流是有利于学生主动发展的学习方式。

  在这个环节,我打算分两个层次进行:

  第一个层次——学习列、行的含义和确定第几列、第几行的过则。

  首先,出示多媒体课件,展示一幅学生非常熟悉的本班座次图,引导学生用自己的语言表述班长小红的位置。在这里,根据学生的认知规律和年龄特点,可能会出现以下几种答案:有的可能会说第几行第几个,也有的会说第几排第几个,或者说左边第几个等等。但是学生所说的行和排都是根据其自己的理解和习惯确定的,并未形成一个统一的规则。由此引发学生的争论:为什么同一个人的位置,有人说是第4排第3个,还有的同学说是第3排第4个呢?在争论中,很自然的水到渠成的引出列的含义:为了统一标准,我们把竖排叫做列。在数列的时候,一般按照从左到右的顺序。接下来,在列的基础上学习行,对学生来讲就比较容易了。明确从“排”到行,从前到后的顺序后,我打算把教学的重点放在列和行的训练上。在此,我设计了让学生根据已学知识,在来找一找班长小红的位置,以及联系本班的实际找一找自己的位置。达到了学以致用的最终目标。

  这一层次,从学生的生活实际引入,还数学的'本来面目,符合课程标准的要求。根据题目设问,既能达到以问促学的目的,又激发了学生的求知欲。

  在刚才学习的基础上,老师进一步提出用圆圈表示小红的位置。此处设计的目的是为了让学生体会点子图的简洁。

  第二个层次——数对的含义和数对表示位置的方法。

  我先给学生设置障碍:让学生根据刚才所学知识,跟随老师的速度,记录“点”

  的位置。老师说的速度越来越快,让学生感觉到力不从心,让学生体会到这种方法很不简便,为后面教学数对埋下伏笔。顺势,老师提出要求:有没有比这更简便的方法记录位置呢?

  学生课能会出现很多不同的表示方法:4。3;4*3;(4,3);4,3通过全班交流和争论,让学生逐一发现每种方法的优缺点,从而确定最科学的记录方法:(4,3)。

  发散学生思维,让学生根据已有的知识,自主发现多种方法,在老师的点拨下,找到最优的一种方法。在学生的思维碰撞中,学生的情感体验和能力都得到了发展。

  在此,老师明确介绍数对表示位置:数对中有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为,小红的位置是在第4列第3行,所以在这里我们应先写列数:4,再写行数:3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间加上一个“,”

  把两个数隔开,也就是(4,3)。我们读作“四三”。之后,老师随机指方格图上的圆点,让学生练一练。

  在这里,我还设计了一个小环节:让学生用数对表示自己的位置,先把它写在练习本上,然后再回答。

  第三个环节:拓展应用。

  练习是数学课堂教学的一个重要环节,我设计的练习题里求做到由易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的目的。

  在这个环节中,我设计了三个层次的练习:

  1、课本中的练一练:根据给出的数对,说出表示的是第几列第几行。这是考察学生对数对的基本理解和应用。

  刚才,同学们根据两个数组成的数对,能很快确定位置。生活中有没有运用数对解决的问题呢?由此我将学生的思维带到生活中,在这设计了第二个题:2、要求学生、任意报出某个同学的名字,让小组内其他同学说说这个同学是在第几列第几行,并用数对表示出来。

  然后,多媒体导入练习3:在我们的厨房里经常看到这样的图案:想想看用数对怎么表示呢?再给出学生四个数对,让其找到位置并用铅笔标出,看一看,组成的什么图形?

  这些练习的设计,是让学生利用学生熟悉的现实场景,安排了多种形式的学习,并与生活实际相结合,充分利用了学生已有的生活经验,了解到这些方法不是单一的,有时也是随着事物的变化而产生变化的,感受到了数学与生活的联系,体会到生活中处处有数学,真正实现人人学有价值的数学。

  第四环节:回顾整理。

  回想这节课,说说自己的收获有哪些?

  这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

  第五、回顾课堂说板书。

  板书是一堂课堂教学内容的高度浓缩,为了给学生对教学内容留一个直观、完整、深刻的印象,更好地突出重点,我这样设计我的板书:

  确 定 位 置

  竖排→列 左→右

  横排→行 前→后

  ( 4 , 3 )

【用数对确定位置】相关文章:

用数对确定位置完整版03-12

用数对确定位置完整版(精选)03-12

用数对确定位置完整版(合集)03-12

用数对确定位置完整版15篇[精选]03-12

用数对确定位置完整版15篇[必备]03-12

用数对确定位置完整版15篇(优)03-12

位置11-27

位置的作文(经典)09-23

位置的作文04-30