教案笔算乘法
作为一名教职工,总归要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。写教案需要注意哪些格式呢?下面是小编精心整理的教案笔算乘法,希望能够帮助到大家。
教案笔算乘法1
教学目标
1.经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,《三位数乘两位数的笔算乘法》的教学设计与教学反思。
2.通过两位数乘两位数到三位数乘两位数知识的迁移,使学生经历乘法计算的全过程,掌握算理和计算的方法。
学习任务
掌握三位数乘两位数的计算方法。
教学重点和难点重点:掌握三位数乘两位数的笔算方法。
难点:正确规范地计算和书写乘法竖式。
过程设计
教学过程
一、激情导课
1、咱们班的学生,个个非常聪明、能干,计算能力很强,现在请同学们展示一下,咱们来口算几道题好不好?电脑出示题:145×3、421×2、45×11、35×12、135×8、214×9。
2、笔算。
师:大家看这道题,45×12得多少呢?
请拿出练习本,开始笔算吧。(请一名学生板演)
师:他计算的结果正确吗?
师生共同检查竖式……
师:谁能说说怎样笔算两位数乘两位数?
让全体学生独立完成,师巡视。有的学生也许会用以前学过的知识:列竖式或用计算器等。指名板演,并组织反馈
学生继续讨论计算方法,巩固两位数乘两位数笔算乘法的方法
师:同学们对两位数乘两位数的计算这么熟练,我相信大家这节课一定能学好,你们有信心吗、
二、 民主导学
1、任务呈现
例1:李叔叔从某城市乘火车去北京用了12小时,火车每小时约行145千米,该城市到北京大约有多少千米?
提问:李叔叔的城市离北京有多远?要解决这个问题应该怎样列式呢?
145×12=
观察这算式,你发现和我们以前所学得乘法算式有什么不同吗?
揭示课题:三位数乘两位数。
2、自主学习
师:你能运用估算知识猜一猜:李叔叔家离北京大约有多远吗?把你的估计写下来,与同桌交流。
(1)那有什么计算方法让我们的计算结果更加精确呢?
(2)请拿出练习本笔算吧,做完后再和同桌交流一下,你是怎样笔算的?要求用竖式计算。(老师巡视指导,特别关注有困难的学生。)
(3)谁愿意把你的笔算过程分享给大家?说一说你是怎样算的?
3、展示交流
(1).学生展示、交流估算方法:
A、把145看成150,150×12=1800
B、把12看成10,145×10=1450
C、把145看成150,12看成10,150×10=1500……
(2).让学生以小组为单位,进行自主探索,通过观察、比较、发现、交流、合作等学习方法研究用竖式计算三位数乘两位数的笔算方法,教学反思《《三位数乘两位数的笔算乘法》的教学设计与教学反思》。
A.鼓励学生独立思考,引导学生自主探索、合作交流,教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。
B.不管是正确的竖式还是错误的竖式都要让学生说一说自己的思维过程,通过学生分享后,再通过集体纠正学生出现的错误,理解三位数乘两位数的算理。
三、检测导结
(一)目标检测
1、课件出示:书第49页的做一做。
学生独立练习
师:谁来说说你的笔算过程和结果。
2、我做得最快
322×24=145×27=679×13=286×35=
(1)分组算
(2)公布比赛结果
(3)表扬
2、结果反亏你
出示课本第50页练习七的'第7题
(1)谈话:有位同学他也做了三道题,请同学们帮他诊断一下,他有没有做对,把不对的改正在旁边。
(2)生独立完成,交流汇报结果。
3、反思总结
这节课,我们根据两位数乘两位数的方法,进一步学会了三位数乘两位数的方法,我们运用的就是迁移类推的办法,这是我们解决问题时经常采用的一种思路。要是让你计算四位数乘三位数或多位数乘多位数你有办法吗?你敢试一试吗?愿意动脑筋的孩子,请你们试试吧。
鼓励学生大胆的展示、交流: 1、数位对齐;2、分位相乘;3、合并相加;4、满十向前一位进1
教学反思
本节课是一堂计算知识的新课教学。从学生已有知识经验出发,给学生创设了思考与交流的空间。我在上课过程中更加认识到小组学习在当前教学中的作用,通过小组合作学习,让每个学生充分发表自己的见解
教案笔算乘法2
教学内容:
人教版小学数学三年级下册第四单元P46页例1及相关练习。
教学目标:
1、掌握两位数乘两位数(不进位)的笔算方法,能正确进行计算。
2、理解笔算的算理,乘的顺序和积的书写位置。
3、能够运用所学知识解决生活中的问题,感受数学在日常生活中的作用。
教学重难点
重点:掌握笔算的方法,并正确进行计算。
难点:掌握笔算乘的顺序及积的书写位置,理解笔算的算理。
教学准备:课件、三角板、点子图。
一、复习导入
1、口算:12×20=11×30=14×10=
11×4=12×3=14×2=
2、抽查学生笔算,并说一说计算过程:
3、导入:同学们,你们有没有去过书店买书呢?林老师这个周末也去书店买了一批书,请看屏幕(课件演示)
二、探究新知
1、教学例1
(1)出示教材第41页例1主题图。你能帮林老师解决这个问题吗?
(2)要算一共买了多少本书,该怎么列式呢?为什么要用乘法?(板书:14×12=)
(3)师:同学们,两位数乘一位数我们已经学会了,那么两位数乘两位数又该如何计算呢?今天这节课,林老师要跟同学们一起解决的`问题。(板书课题:两位数乘两位数)
(4)引导学生利用复习题的两位数乘整十数和两位数乘一位数的方法,以小组为单位,合作探究找到14×12的计算结果。
(5)小组合作探究,找到14×12的计算结果。
(6)汇报:抽查小组成员上台板演,并说一说是怎么想的?
(7)过渡:孩子们真聪明,利用前面我们学过的知识,成功的找到
14×12的计算结果,非常棒,继续加油哦。我们已经知道14×12=
168,怎样把它写成像14×2那样,列竖式计算呢?那么请继续跟林
老师一起学习。
2、探究两位数乘两位数的笔算方法
(1)结合点子图,帮助学生理解算理和算法的关系。
第一步:先算2套书的本数,就是求2个14。先算(2×4=8)那么8代表的是什么呢?应该写在哪一位?(抽查学生上台写)再算2个10,写在哪一位?求出2套书是28本。
第二步:再算10套书,就是求10个14,我们先怎么乘?按照前面乘的方法,我们是先用十位上的1与个位的4相乘,得到4个十(课件演示10×4=40),40该怎么写?(请一位同学上台写)还有哪一位没算?再算十位上的1与十位的1相乘,得到1个百(课件演示10×10=100)该怎么写?算出10套书是140本。
第三步:最后要算12套书,该怎么做?(把两次乘得的积加起来28+140=168)(板书:两位数乘两位数的笔算)
3、讨论:第二层积个位上的“0”写不写?
(因为4在十位就代表40,不影响计算的结果,可以省略不写)
4、回顾并引导学生归纳总结两位数乘两位数的笔算方法。(课件演示)
5、两人一组,互相说一说两位数乘两位数的笔算方法。
三、巩固练习。
1、
2、
四、总结
1、今天我们学习了什么内容?
2、总结两位数乘两位数的笔算方法。
五、板书设计:
教案笔算乘法3
教学内容
笔算乘法(教材第49页例2及第50页练习十一第1~2题)。
教学目标
1。让学生通过两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。
2。在学习活动中感受数学与生活的密切联系,培养学生良好的思维品质和应用数学的能力。
3。培养认真细心等良好的学习习惯。
重点难点
学会计算两位数乘两位数进位的乘法。
教学准备
多媒体课件
复习导入
78×11= 33×21= 24×12= 14×12=(组织学生独立计算,并让学生说说计算过程。)
师:上面这几道计算题都是两位数乘两位数不进位的乘法,今天我们继续来探讨较复杂的两位数乘两位数的笔算乘法。
揭示课题:笔算乘法(进位)
新课讲授
1。导入:仔细观察图片,你获得了哪些信息?大家可以提出什么问题呢?
2。例2:课件出示例2情景图。
春风小学有37个班,平均每班有48人,一顿午餐要为每人配备一盒酸奶,一共需要多少盒酸奶?
师:你从题目中获得了什么信息?应该怎样列式计算呢?
引导学生列式:48×37=
3.各组讨论:怎样计算48×37。
师:请把想出的计算方法写在纸上。
4.组织交流。
师:各组展示本组的算法。不容易说清楚的,就写在黑板上。
(1)48≈50 37≈40
50×40=20xx
大约20xx盒。
(2)40×37=1450
8×37=296 1450+296=1776
一共需要1776盒酸奶。
(3)48×30=1440 48×7=336
336+1440=1776
一共需要1776盒酸奶。
(4)48×37=1776(盒)
一共需要1776盒酸奶。
5。师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见给以肯定或补充。使学生了解每一种算法的特点和适用范围。
师:先用个位的7去乘48,乘得的结果的末位同个位对齐,计算中满几十就向前一位进几,再用十位上的3去乘48,乘得的结果的末位同十位对齐,然后把两次乘得的结果加起来。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
6。引导学生归纳小结计算方法:
乘数是两位数的乘法,先用一个乘数个位上的数去乘另一个乘数,得数的末位与乘数的个位对齐,再用这个乘数的十位上的数去另一个乘数,得数的.末位与乘数的十位对齐,然后把两次乘得的结果加起来。
课堂作业
1。完成教材第50页练习十一第1题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
23×34=782
54×29=1566
47×62=2914
78×82=6396
2。完成教材第50页练习十一第2题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
课堂小结
1。请学生讨论笔算乘法时要注意什么问题,并交流。
2。教师强调:用竖式计算时,要注意每次乘得的数的末位应该和哪一位对齐。还要注意记住进位数,正确处理进位问题。
课后作业
完成数学书第51页练习十一第6—7—8—9题。
板书设计:
笔算乘法(进位)
例2:48×37=1776(盒)
一共需要1776盒酸奶。
教案笔算乘法4
在当前的计算教学中,借助情境以及直观的动手操作理解算理并不是计算教学中的难点。问题在于,教师们注意了算理的揭示,但往往轻描淡写地很快揭示所谓的简化算法。这样的教学往往导致了在揭示算理到抽象算法之间出现断层,由此造成学生对计算的技能掌握不牢,对知识的运用、迁移不够。最近,笔者结合两位数乘一位数一课的教学,对苏教版第一学段加法、乘法的笔算教材的编排进行了深入的思考。
思考一:学生为何不接受乘法的原始竖式?
两位数乘一位数的教材编排,首先是揭示两位数乘一位数的算理,随后呈现乘法的原始竖式,最后优化简单的竖式书写方法。编排原始竖式的意图,是为了加深学生对算理的理解,同时也为学生架设一条桥梁,帮助学生从直观算理过渡到抽象的算法。然而在实际的教学中,学生结合情境图能较好地理解算理,但是在尝试笔算时往往就跳过原始竖式直奔简化竖式。《江苏教育》20xx年第3期杨春燕老师《两位数乘一位数教学例谈》一文中对这种现象的解释是,学生对加法与乘法的关系、表内乘法、位值原则等的知识储备能够使他们自我跨越。事实真的如此吗?笔者在不少课堂上看到这样的现象:学生在自主尝试出简化的竖式计算形式后,教师为了强化算理,尊重教材的编排,又向学生呈现出乘法的原始竖式,而这个时候,学生往往一片哗然,并不认同这一原始竖式。可见,学生虽然能尝试出竖式的简化形式,但并没有实现对原始竖式的真正跨越。那么,学生为何不接受乘法的原始竖式呢?按理说,只要理解了算理,过渡到原始竖式是水到渠成的事情,而过渡到简化的竖式,思维的跳跃性反而很大。带着这个问题,笔者在组内两位年轻教师开设同课题校级公开课时进行了实验统计。(由于是临时将后面的内容抽调上来教学,因此基本不存在家长提前辅导的情况。)两个班96名学生在尝试竖式时,只有一名学生用了原始竖式,原因是该学生看了数学书,其他95名学生都直接采用简化的竖式进行计算,并且我预设的 将前面口算的结果直接写在竖式横线下的现象无一例发生,学生在书写计算结果时都是先写个位,再写十位。我顿时醒悟:学生有着丰富的加法笔算的经验,先算个位,再算十位的笔算过程,横线下面直接书写计算结果的外在形式,都促使了学生在探究乘法笔算过程中自主迁移了这些知识经验。这种情况下,学生自然就难以接受乘法的原始竖式了,而教师在学生自主探究后再来教学原始竖式的意义也就不大了。
思考二:加法原始竖式的教学意义何在?
教材在编写两位数乘一位数时引进了乘法的原始竖式,这引起了我一系列的思考:加法笔算的教材编写为何忽略了原始竖式?根据教材目前的编排,加法笔算的教学状况又是怎样的?如果在教学加法笔算时也引进原始竖式,这样的教学意义何在?
先摘录一个笔算加法的教学片段:
师:43+31等于多少呢?先用小棒摆一摆。
学生操作,得出43+31=74。
师:你是怎么想的?
生:40+30=70,3+1=4,70+4=74。
师:谁能在计数器上表示43+31?
生拨计数器:先在计数器上拨43,再拨上31,结果等于74。
结合拨珠,教师引导学生说出算理:43+30=73,73+1=74。(这个算理相对难一些)
师:43+31,我们还能用竖式帮助计算。
教师板书竖式的框架,让学生尝试接下去计算。
学生的尝试的情况可以分成三种:(1)直接在横线下书写刚才口算的结果74;(2)先算十位上4+3=7,再算个位上3+1=4;(3)先算个位再算十位。
师:在竖式计算时,我们一般从个位算起,谁来把计算的过程跟大家讲讲?
生1:先算个位上3+1=4,4写在个位上,再算十位上4+3=7,7写在十位上。
师:刚才这位同学的方法就是竖式计算的方法,大家掌握了吗?
同上面这个教学片段一样,很多教师在揭示算法时不自觉地将算法同算理剥离开来,诚然,站在成人的角度,笔算加法就是这么简单:个位同个位相加,十位同十位相加,几乎没有任何需要解释的理由。但殊不知这样教学,学生尽管能较快地掌握加法笔算的方法,但是这种机械、形式化地操作,让学生在计算时不自觉地脱离算理的有效支撑,学生的计算仍然只是稀里糊涂地计算,甚至当学生学习乘法笔算时,尽管能娴熟地迁移加法笔算的方法,但同时导致了乘法笔算也只是停留在机械化操作的层面。因此,笔者认为,加法笔算教学,增加原始竖式的教学十分有必要。在教学一年级(下册)加法笔算时,学生交流完43+31的口算算理之后,我让学生尝试进行竖式计算。交流时,有不少学生是直接将答案74抄写在横线下面的,也有不少学生知道从个位算起,再算十位,列出了标准的竖式。这个时候我就将原始竖式呈现出来:
让学生思考:根据刚才口算的三个步骤,竖式计算过程中也应有这样的三个步骤,而你们在计算40+30=70时,怎么就直接把7写在十位上面去了呢?学生一开始愣住了,如实告诉我:家里爸爸妈妈就是这么教的,书上也是这么写的。我就继续让学生思考:爸爸妈妈教的竖式以及书上的竖式这样算有没有道理呢?我随即同学生做了几个实验:我让学生用爸爸妈妈教的方法做几道题,我用原始竖式计算,放到黑板上一比较,学生发现,计算结果都一样,而原始竖式看起来计算的步骤更清楚,但是写起来较麻烦。并且学生指出,原始竖式中一位数加上整十数,得数的个位上还是原来的一位数,十位上的数跟整十数十位上的数相同,所以就能省略计算的步骤,把竖式写的简单些。经历了对原始竖式的观察、比较、优化,我相信学生对笔算两位数加两位数的算法就不再是操作性理解了。
非常巧合的是,最近笔者在翻看以前的杂志时发现,上海小学数学教材编写组在20xx年第6期《小学青年教师》发表的《关于整数加减法竖式计算的处理思路》一文中也指出:根据新的学力观,我们不应该仅仅重视竖式一般的形式,也应该重视使用竖式表现思考过程。而这种表现了思维过程的竖式形式其实就是原始竖式。加法笔算时引进原始竖式,不但有效沟通了直观算理到简化算法的过渡,更让学生对数和数位结合的`位值原则有了初步的体验,这为学生以后的乘除法的笔算学习打下了坚实的基础。
思考三:笔算乘法在沟通算理和算法时以什么为突破口?
学生有了将加法的原始竖式过渡到简化竖式的经验后,教学两位数乘一位数时,怎样由原始竖式过渡到简化竖式已经不再是本节课的难点了,因为加法同乘法的简化过程、方法都是相通的,再加上学生在丰富的加法笔算经验的引领下,完全可以自主探究出乘法竖式的简化写法,因此,教学乘法的笔算时,我们不妨重新改编教材,将原始竖式这块内容割舍掉。而割舍这一内容,需要寻找到一种比原始竖式更能有效沟通算理和算法的突破口。
二年级(下册)第四单元中教学三位数连加,练习里有这样一道题(42页):三角形花坛的三条边一样长(每条边长268厘米 ),花坛栏杆的长一共多少厘米?解决这道题时,不少学生列了乘法算式2683,可是乘法竖式不会计算,当时我就引导学生借助加法竖式进行计算,并且在加的过程中让学生思考怎样算能算的更快,学生在计算每一位上三个数相加时自然运用口诀进行简便计算。这道题给了我很大的启发,学生尽管是在用加法竖式进行计算,可是运用乘法口诀帮助计算的方法不就是乘法笔算的方法吗?因此,在学生初步具备数和数位位值知识的基础上,在充分理解算理的前提下,笔算几个相同加数连加的简便算法就是提炼乘法笔算方法的最佳突破口。当然,我们在重组教材时,还需要考虑到,如何促使学生在加法笔算时自觉采取简便算法,以促使这一算法有效迁移到乘法的笔算中。
在使用现行教材例题进行教学两位数乘一位数,交流142的算理时,学生能很快说出:14+14=28。但当教师问及还能怎样想时,很少有学生能想到先算102=20.再算42=8,再算20+8=28。细细分析发现:学生在解决142时,往往把14看做一个整体,两个14相加,学生能很快口算出结果。但是教学142的笔算,需要支撑的是第二种算理,因此教学时,老师往往根据教材的编排想方设法引导学生再用局部分解的眼光来思考问题,(把14分成10和4,142就是把2个10和2个4合起来),这显然不太符合学生的思维常态,因此课堂进行到这一环节时常常会冷场。同时,由于计算2个14比较简单,在尝试乘法笔算时不排除会有部分学生的计算仅仅停留在加法计算的层面上,而没有内化到乘法上。这就导致这部分学生在后面的练习中出现计算步骤混乱、计算方法混淆等情况。
于是,我们尝试调整例题中的数量,促使学生在口算时用先分解再综合的策略解决问题。如可以改成每只小猴采32只桃,3只小猴一共采多少个桃?这样,学生在口算3个32相加时难度相对大些,学生必然会采用分解的策略:先算303=90,23=6,再采用综合的策略:90+6=96。在明确算理后,让学生用连加的笔算验证刚才的口算过程,并且让学生思考怎样算能算的更快。在运用口诀进行加法竖式的简便计算后,让学生带着问题思考:如果让你自己尝试用乘法竖式计算323,你会从这个连加竖式中得到哪些启发呢?学生边思考边进行乘法竖式的探究。在此基础上,沟通加法笔算与乘法笔算的相通之处,进一步明确算理、巩固算法。在交流乘法笔算的计算过程时,教师让学生说说每一步计算的算理,并引导学生及时同加法竖式联系起来,使学生明确,乘法中的每个计算步骤都能在加法竖式中找到,并且用到的口诀也是一致的。
3.改编重组教材的可行性再思考:结合几个相同加数连加的笔算,学生在探究笔算两位数乘一位数(不进位)时,对算理的理解更深入,对算法的掌握更清晰。这一突破口对后继学习的两位数乘一位数(进位)产生的优势更明显。现行进位乘的教材从原始竖式过渡到有进位的简化竖式,这个过程有相当大的跳跃性,既有中间计算步骤的简化,又有进位方法的提炼,仅仅从原始竖式中获得启发,让学生自主提炼出简化的进位乘,难度比较大。相比而言,将连加竖式的简便算法迁移到简化的进位乘,更能促进学生自主迁移、运用已有的计算经验,从而有效拓宽探究的空间,增强探究的欲望,发展学生的思维。以243的竖式为例:
师:这两种竖式在计算时有什么联系?
生1:都是先算3个4相加,再算3个20相加,再把它们合起来,因此,计算的结果相同。
生2:计算过程中用到的口诀都相同。
生3:进位的方法也相同:都是个位満十,向十位进1。
上面的教学片段证实:以笔算加法的简便计算作为教学笔算乘法的突破口,更能有效沟通算理与算法,促进学生的知识迁移。这样组织教学,拓展了学生后继学习新知的探究空间,促进了学生对知识结构的疏理、重建,提升了数学思维、能力的发展,让学生明明白白地学会计算。
教案笔算乘法5
教学内容:
复习三位数乘两位数的笔算乘法
教学目标:
通过复习,使学生熟练的掌握三位数乘两位数的笔算乘法。
教学重点:
因数末尾有0的和因数中间有0的乘法。
教学过程:
1、第55页第3题
283×19301×27180×50193×40
216×32103×18650×12408×30
让学生先估一估,在列竖式计算。教师巡视指导列竖式计算有困难的学生,订正时注意帮助学生查找错误原因。
2、第56页第5题学生自己做
3、第6题是一道求比一个数的几倍多(少)几的综合练习。
让学生找准数量关系自己填写。
4、第7题让学生说说想的过程。
5、第9题是运用所学的三位数乘两位数的计算知识解决实际问题的`题目。
6、第10题、让学生自主尝试、对比的基础上反思,明白在列竖式时,上面一行写三位数,下面一行写两位数,这样计算比较方便。
7、第11题、12题学生先自己做,再在小组内交流,说说自己为什么这样做?做错的同学改正做法。
三、自我展示。
1、火眼金睛辨对错
152304360
×23×12×50
356681800
10434
1396408
2、一车间每月加工756个零件,照这样计算,全年加工多少个零件?
教案笔算乘法6
一、教学目标:
1、经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握方法。
2、通过自主探究、讨论交流等方式借助点子图,初步培养学生数形结合的思想,体验解决问题方法的多样性,渗透“转化”的数学思想。
3、培养学生运用转化方法主动学习新知识的能力,发展学生的问题意识和应用意识,体验学数学,用数学的乐趣。
二、教学重难点
重点:掌握两位数乘两位数竖式的算理和算法
难点:理解两位数乘两位数的算理。
三、教学准备:
课件、点子图
四、教学过程
(一)、情境导入
师:看,老师今天给大家带来了什么?
生:神奇的点子。
师:神奇在哪儿呢?请看点一下(变成苹果),再点一下(变成小熊),继续点(变成了书)。
师:看来,在数学当中,可以用点子图(板书:点子图)来代表任何东西。使我们要解决的问题更简便。
二、学习新知
师:昨天,我到书店买书,遇到这样一个问题,谁来读一读?
生:每套书有14本,钟老师买了2套,一共买了多少本?
师:我们知道点子可以代表书,那这里的1套书14本,就可以用一行14个点子来表示。2套就几行点子来表示呢?
生:2行点子(课件出示2行)
师:它表示几个几?
生:2个14。
师:怎么列式?
生:14×2。
师:你会用口算的方法计算出结果吗?
生:先算4×2=8,再算10×2=20,最后算20+8=28。
师:对,除了口算,我们还可以。
生:笔算。
师:列竖式计算时,我们要注意什么?(生;相同数位要对齐)
师:怎么算呢?
生:先用2去乘个位上的4等于8,再用2乘十位上的1等于2个十,所以2写在十位上。
师:刚才我们用口算和笔算的方法计算出14×2=28,哪种方法算起来更快?
生:笔算。
师:这是几位数乘几位数。
生:两位数乘一位数。
师:(指着口算):计算时,我们先把14怎么样?
生:分成10和4。
师:对,就是先把数分小了再进行计算,然后再把两步的积怎么样?
生:加起来。
师:对,这就是(板书:先分后合)的方法,把新知识(板书:转化)成旧知识来帮助我们解决问题。
师:现在每套书有14本,钟老师买了10套,用点子图该怎么表示?谁来说一说?
生:每行14个点子,一共有10行。
师:那这1 0行就表示几套?
生:10套。
师:怎么列式?
生:14×10=140。
师:这是两位数乘两位数中的什么数?
生:两位数乘整十数。
师:那要是钟老师现在买了12套,点子图又该画几行?
生:12行。
师:它表示求几个几?
生:12个14。
师:怎么列式?
生:14×12。
师:这是几位数乘几位数。
生:两位数乘两位数。
师:怎样计算呢?这就是我们今天研究的内容(板书:两位数乘两位数)
师:现在你们能不能估一估14×12大约等于多少?
生:大约等于140。
师:它到底等于多少呢?我们能不能通过点子图利用先分后合的方法把14×12转化成以前学过的知识计算出来呢。
师:好,我们来看一下活动要求,把12套书用先分后合的方法在点子图上分一分、圈一圈,然后列算式算一算。请大家4人为一小组,开始吧。
师:同学们分好了吗?分好的小组请用行动来告诉老师你们分好了。
师:谁来代表你们小组把你们的想法,展示给大家看看。
生汇报:① 14×10=140 14×2=28 140+28=168。
把12套书分成两部分,先算10套,14×10=140再算2套,14×2=28最后算140+28=168就是把两部分的`积合起来。
师:哪些小组和他们的想法一样?哪些小组还有不同的想法?
②14×4=56 56×3=168。
把12套分成3个4套,先算4套,14×4=56,再算3组这样的4套56×3=168。
师:还有没有不一样的分法?
③14×6=84 84×2=168 。
师:(小结)这些作品虽然分的方式各有不同,但他们都有一个共同的特点是什么?
生:先把其中一个因数分小了,然后再合起来,(或者:用到了先分后合的方法)
师:对,就是通过点子图利用先分后合的方法把12套书先分成几部分,转化成两位数乘一位数或两位数乘整十数来计算,然后都是把几部分合起来。
师:我们再来看看这几种分法,你认为哪种分法计算起来比较简单?
生:先算10套,再算2套那种。
师:对,就是这种,因为这样分后更容易口算。
师:那请你和同桌的同学互相说一说这种分法是怎么分的?
师:好,说完的同学请快速的坐好。
师:刚才结合点子图,我们可以口算出14×12=168以外,还能列竖式计算吗?
生:能。
师:那现在我们一起来探究怎样列竖式计算吧。(板书:笔算乘法)
师:好,请大家结合这种分法先独立思考,再在草稿本上试着列竖式算一算,计算之后再和同桌的同学互相说一说你是怎么算的。
师:谁来说说你是怎么算的?
生:先算2乘4等于8。
师:8表示?(生:8个一)写在(生:个位上)
师:再算?
生:2乘十位上的1等于2个十。
师:2写在(十位上)。
师:也就是先用第二个因数个位上的2去乘第一个因数的每一位。
师:再怎么算?
生:先用十位上的1去乘个位上的4等于4
师:4表示?
生:4个十。
师:4就写在(生:写在十位上)。
师:那这里个位上的0还写不写呢?
生:可以不写(师板书:个位上的0不写)
师:接下来再怎么算?
生:十位的1去乘十位上的1。
师:等于?(生:100)表示?
(生:1个百)1写在(生:百位上)
师:对,也就是再用第二个因数十位上的1去乘第一个因数的每一位。
师:那接下来又该怎么算?
生:把二步的积加起来。
师:个位相加等于(8),十位相加等于(6),百位相加等于(1)。
师:这一步的28是怎么得到的?
生:28是14×2得到的,(师板书:14×2的积)。
师:(指着第二步)这一个数又是怎么得来的?
生:它是14×10的积。
师:最后怎么算的?
生:把二步的积加起来。
师:其实就买书这件事来说,28表示求几套书的本数?(2套)
师:140又表示几套书的本数?(10套)
师:看来,我们的竖式也是采用先分后合的方法,把14×12先转化成两位数成一位数和两位数乘整十数,再合起来得到最后得数。
师:在竖式计算过程中,我们第一步先用个位上的2去乘第一个因数个位上的几?(4)等于(8)
师:再用2去乘十位上的1,也就是用2乘的几?
生:2×10=20。
师:也就是什么乘什么?(10×4=40)
师:再用十位上的1乘十位上的1也就是什么乘什么?
生:10×10=100。
师:现在你们能不能在点子图上找一找每个乘法算式对应的位置呢?
生:能。
师:第一个2×4=8在点子图上表示求的哪个部分?
生:右上角。
师:2×10=20在图上又表示求的哪个部分?
生:左上角那个部分。
师:10×4=40,又表示哪个部分?
生:右下角那个部分。
师:最后10×10=100呢?
生:左下角那个部分。
师:最后我们再来看一下竖式计算的过程,我们第一步先算的什么?第二步再算的什么?最后又是怎么算的?
生:先用第二个因数的个位去乘第一个因数的每一位,再用第二个因数的十位去乘第一个因数的每一位,最后把两步的积加起来。
师:现在你们知道怎么算了吗?
生:知道了。
练习巩固:
师:那如果不是14×12,而是其他的两位数乘两位数,你们还能计算吗?
生:能。
师:好,现在大家练习一下答题单上的做一做这几道题吧。
师:请大家一大组算一道题,看哪个组的同学算的又快又准确。
师:哪些同学愿意上来算一算?
师生集体评价,选一题让孩子说说你是怎么算的?其余3题集体评价。
师:第一组做对的同学请举手。
师(小结):今天我们学会了什么?
生:两位数乘两位数的笔算乘法。
师:还用到了一个很重要的学习方法是什么?
生:先分后合转化的方法。
师:对,通过点子图利用先分后合的方法把新知识转化成旧知识来解决,这是一个很好的学习方法,希望大家下来以后能学以致用。
师:在竖式计算的过程中,你觉得有没有什么地方是我们最该注意的?
生:用第二个因数十位上的数去乘第一个因数的每一位时,结果的末位一定要与十位对齐。
师:咱们再来帮啄木鸟治一治病吧!请大家在答题单上判断一下下面的计算正确吗?把错误的改正过来。
师:敢不敢接受今天的终极挑战?
师:猜一猜水果下面藏着几?
教案笔算乘法7
教学目标:
知识与技能:使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
过程与方法:学生在自主探究解决问题的过程中理解两位数乘两位数的笔算算理,培养学生的分析,归纳能力。
情感态度与价值观:在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
教学重点:掌握两位数乘两位数计算方法,能正确笔算。
教学难点:探究笔算乘法的算法,理解算理。
教具准备:多媒体课件
教学过程:
一、创设情景,引入新课
课件出示主题图。
今天,圆圆和妈妈一起去书店买书。圆圆在书店看到一套《百科全书》非常喜欢。1套12本,每本24元,根据这两个信息,你能提出一个什么问题吗?(买一套一共需要多少钱?)
分析:要算一共付出多少钱,用什么方法计算?怎样列式?(就是计算12个24元是多少,列出算式就是:24×12=?)
分析:怎样才能知道估算的钱数最接近正确答案呢?这就需要我们准确的计算出24×12的得数,今天这节课我们就来研究两位数乘两位数的笔算乘法。(板书课题:两位数乘两位数的笔算乘法)
二、启发思维,自主探索
师:谁能来帮帮圆圆解决这个问题?
1、独立思考,寻找方法。
师:你能用你学过得知识想办法算出得数吗?大家赶快动脑想一想,算一算吧。2、教师带领学生一起来分析每个算法:
3、教师讲解笔算方法:
首先,是相同数位对齐。
①计算时,我们先用第一个因数与第二个因数个位的数相乘。即:24X2=48(师边说边盖住第二个因数十位上的数字)
②我们再用第一个因数与第二个因数十位上的数相乘,即24X10=240
(师盖住第二个因数个位上的'数字)说明:我们在列竖式的时候,只要把4写在十位上,把2写在百位上,就可以表示240了。这个0只是占位的作用,为了简便,这个0可以省略不写。(边说边擦去0)
③我们现在分别计算了24X2,24X10,那怎样才能表示出24X12的积呢?
(把上面两个积相加)
4、观看竖式:
师再问:a。第一步表示什么的积?(24×2)
b。第二步表示什么的积?(24×10)
“4”为什么写在十位上?(24中的4是十位上的1和个位上的4相乘得出的结果,是4个十,所以和十位对齐)
c。第三步算的是什么?(48+240)
5、小结:刚才我们用竖式计算24×12时,第一步是用个位上的2与24相乘,第二步是用十位上的1与24相乘,第三步把两次相乘的积相加。
师:也就是说圆圆买这套书要付288元。我们不要忘记把算得的结果写到等式的后面。
三、巩固运用,解决问题。
活动:智力大比拼
第一关:小车开到的哪儿停?
(强调:第二个积的末位要和第一个积的十位对齐)
第二关:笔算大比拼
33×13= 21×34= 43×12=
第三关:小马虎体检中心(仔细观察,对的打“√”,错的打“×”,并改正。)
第四关:弄脏的题单
四、归纳梳理,总结收获
师:今天大家表现得真不错,谁来说说这节课你有什么收获?
两位数乘两位数不进位笔算乘法步骤:1、用第二个因数个位上的数去乘第一个因数得出第一个积。2、用第二个因数十位上的数去乘第一因数得到第二个积,得到这个积的末位要和第一个积的十位对齐。3、把两次乘得的积加起来。
五、家庭作业:
课本第47页第2、4题
板书设计:
教案笔算乘法8
【教学内容】:人教版三年级数学下册P46笔算乘法例1及做一做
【教学目标】
1、让学生经历发现两位数乘两位数的计算方法的过程,体验方法的多样化。
2、学会两位数乘两位数(不进位)的笔算方法
3、通过比较方法的内在联系,渗透数学思想与方法。
【教学重难点】
1、重点:初步掌握两位数乘两位数的笔算方法(不进位)并能运用两位数乘两位数来解决生活中的问题。
2、难点:理解算理。
【教具学具】
多媒体课件、点子图、水彩笔
【教学过程】
一、创设情境,生成问题
1、为了奖励我们三年级爱读书的学生,王老师准备为大家购买《童话故事》书,这一套书有14本(出示课件2),老师想买2套,请问,一共买了多少本?
算式是什么? 14×2=28(本)(板书:14×2=28)为什么用乘法?求2个14是多少?
认真观察算式中的两个乘数这是我们学过的几数乘几位数?(两位数乘一位数)
买10套呢?(出示课件3)14×10=140(本)(板书:14×10=140)
这是我们学过的(两位数乘整十数)。
2、那么如果王老师要买12套,一共买了多少本呢?这也是我们今天要学习的例1(出示课本的主题图4)
从题中你获得了哪些信息?
二、探索尝试,寻找方法
1、从题中我们知道:每套书有14本,(课件出示5)这是14本《童话故事》书,这也就是1套书,2套书,3套书……12套书。如果我们把每一本书看做一个圆点的话,就出现了眼前这样一幅点子图。(课件出示6)这是1个14,、2个14、3个14……12个14.12套书一共多少本?
12个14列成算式就是14×12,我们能不能想办法将14×12这个两位数乘两位数转化成我们学过的两位数乘一位数或整十数呢?拿出老师课前发的点子图。我们一起来看温馨提示:
(课件出示7:温馨提示)
(1)先独立思考,你能不能想办法将14×12转化成14乘一位数或14乘整十数来计算?
(2)用彩笔在点子图上先分一分,并圈画出来,再把算法在点子图右边写出来。如果有困难,可以看看书中的小朋友是怎样分的。
2、现在大家动手分一分,算一算。
3、老师选择几位同学,讲讲他们分的过程。(张贴学生作品)
①把12套书分成3个4套,1个4套有14×4=56本,3个4套有56×3=168本;
②把12套书分成2个6套,1个6套有14×6=84本,2个6套有84×2=168本;
③把12套书分成1个2套和1个10套,2套有14×2=28本,10套有14×10=140本,一共有28+140=168本;
④把12套书分成3套和9套,3套有14×3=42本,9套有14×9=126本,一共有42+126=168本;
⑤把12套书分成4套和8套,4套有14×4=56本,8套有14×8=112本,一共有56+116=168本;
⑥把12套书分成5套和7套,5套有14×5=70本,7套有14×7=98本,一共有70+98=168本;
4、这些作品在分一分,算一算的过程中都计算出了14×12=168(本),仔细观察我们会发现大家的分法虽然不同,但他们之间有一个共同特点,你发现了吗?(都是把这些点子分成了几部分,然后再合起来)也就是先分再合。(板书:先分再合)
师:为什么要分呢?
生汇报
师:分了以后数变小了,就会算了,分的过程中就已经把两位数乘两位数转化成了两位数乘一位数或两位数乘整十数。就将我们今天要学的新知识转化成了以前学过的旧知识。这是数学学习中经常用到的一种思想方法转化的思想。(板书:转化)
5、通过在点子图上分一分、算一算我们知道14×12=168,如果没有点子图,你能根据右边的提示试着列竖式计算吗?(出示课件9) 谁愿意到黑板上来算? 其他同学在练习本上列竖式计算。
算完后在小组内交流你是怎样算的`?(出示课件10)
请演板的同学给大家讲讲你是怎样算的?
师重点强调、点拨:
①结合竖式,这里是14还是140,为什么?(出示课件11)14个10是140.
②140个位上的0可以不写吗?为什么?用第二个乘数十位上的数去乘时,所得的积表示几个十,所以末尾要和十位对齐。(出示课件12)
(6)我们一起回顾一下14×12用竖式计算的过程,是分三步进行计算的,先用第二个因数个位上的2去乘14得28,28表示几个几?第一次相乘的积和个位对齐;再用第二个因数十位上的1去乘14得140,140表示几个几? 第二次相乘的积和十位对齐;最后把两次乘得的积28和几加起来?
我们在列竖式计算时也是把12分成10和2用,他们分别乘14,最后再把两次乘得的积加起来,其实两位数乘两位数的笔算和口算的算理是一样的都是先分再合,只不过书写形式不一样。
(7)优化方法
我们已经通过竖式计算出结果,看看谁的眼睛最亮,其实刚才的这些分法当中有一种分法,正好和竖式计算的过程完全一样,你找到了吗?把12套书分成2套和10 套。
竖式中的28对应的是图中什么颜色圆点?是几套书的本数?140对应的是图中什么颜色圆点?是几套书的本数?
(口算、竖式、点子图三者对照比较,找相对应的部分。)
对照点子图我们理解了算理,结合竖式同桌两人再说一说怎样计算两位数乘两位数。
4、揭示课题:这道题在计算中每次相乘的积满十进位了吗?也就是不需要进位,谁能根据本节课学习的知识说出课题?我们今天就一起来学习笔算两位数乘两位数( 不进位)(板书课题)
5、出示学习目标。(出示课件5)
(1)结合点子图,明白两位数乘两位数笔算的算理 。
(2)能正确书写竖式,会笔算两位数乘两位数。
三、回顾整理,反思提升
1、对照目标谈谈你这节课有什么收获?
2、在计算两位数乘两位数的笔算时有什么要提醒大家注意的呢?
在解决问题的过程中我们学会了什么方法?(转化)今后我们再遇到新问题我们可以怎么办?(转化成学过的知识自己来解决)
四、巩固应用,内化提高
1、做一做。(完成课本46页的做一做)指名板书讲解汇报计算过程
2、啄木鸟治病。(课本47页第3题)
3、解决问题我能行
小结:在数学学习中我们经常用旧知识去解决新问题。希望同学们能用这节课学到知识去解决数学王国里更多的新问题。
课后反思:
两位数乘两位数不进位笔算乘法是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的教学重点。十位部分积的对位问题,是本节课的一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,都仅仅围绕乘法的意义来展开。12套童话故事书,每套14本,一共有多少本?学生很快分析并解答了出来:12个14是多少? 第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点。学生尝试用竖式计算14×12=,师巡视辅导,然后指名板演不同计算方法,让学生根据题意观察、比较、不同算法,辨析、交流分辨对错。因为有了前面的铺垫,学生掌握起来容易多了,能够理解1个十乘4得到4个十,故4应照齐十位,其它依此类推。效果良好。
这是一堂计算课,学生要从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。由于练习是一种有目的、有步骤、有指导的教学活动。所以教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题,计算是枯燥的,但也是有用的,因此引导学生能应用知识解决生活里相关的实际问题,既练习了所学知识,又体会数学的作用,逐步树立应用数学的意识,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法。
在教学的过程中我也发现了自己的不足,如课堂提问的策略问题,面对学生的突发问题,有时不知道怎样去引导。出现了一些重复教学的情况,如:对学生估计过低,学生已经表达清楚地内容,总要自己再重述一遍。 还有些孩子在计算的过程中,容易一部分按乘法计算,另一部分按加法计算;也有一些孩子把个位与第一个因数相乘的积,十位与第一个因数相乘的积,应该是相加,而写为相乘。计算不熟练。在以后的学习中要强化训练。
教案笔算乘法9
教学内容:
教材第47-48页练习十
教学目标:
1、巩固复习两位数乘两位数的笔算方法(不进位),并能正确、熟练地进行笔算。
2、运用所学知识正确、熟练地解决问题。
教学重点:
正确、熟练地进行笔算和会解决实际问题。
教学难点:
正确、熟练地进行笔算和会解决实际问题。
教学准备:
多媒体课件 计算题卡片
教学过程:
一、复习整理
1、复习两位数乘整十数的口算。
3420=答案
1710=答案
1330=答案
2130=答案
4320=答案
3240=答案
5170=答案
6330=答案
7210=答案
巩固复习两位数乘整十数的口算,为复习笔算打好基础。
2、复习两位数乘两位数的笔算。
1244=答案
3213=答案
4211=答案
2123=答案
指名四位同学到黑板上完成,其他同学在 练习本上完成,完成后每个同学说一说计算过程,指名学生任选一题说出计算过程。
3、教师小结:笔算两位数乘两位数(不进位)乘法时,用第二个因数的每一位上的数分别去乘第一个因数,再把两次乘得的结果加起来。
二、巩固练习
1、笔算。
1244=答案
3213=答案
4211=答案
2123=答案
2332=答案
4121=答案
2223=答案
3412=答案
全体同学在练习本上完成,集体订正结果。
2、3911=答案
3131=答案
2333=答案
2224=答案
1241=答案
让同学们任选两题在练习本上完成(竖式计算),老师巡视,把完成既正确书写又好的同学的练习本进行展示,让其他同学向他学习,并把这道题的卡片送给这位同学,以示鼓励和表扬。
3、让学生独立完成教材第47页的'第4、第5题,然后指名学生回答,列式计算,写出计算过程和结果。
这两道题是图文结合题,所以要引导学生认真观察题和图,正确找出解决问题的信息数据。
三、课堂作业新设计
1、列竖式计算。
3421=答案
3113=答案
1212=答案
2211=答案
1125=答案
2、每个胶卷售价21元,买14个交卷要用多少元?
3、每箱苹果重13千克,32箱苹果共重多少千克?
4、每个工人每天挖树坑11个,15个工人一天挖树坑多少个?
四、思维训练
1、连一连。
1810 860
3112 605
20xx 180
5511 372
2、小华每天坚持写13个毛笔字,他在7月和9月共写了多少个毛笔字?
3、李老师买了2个足球,张老师买了4个篮球,王老师买了1个足球、1个篮球、3个网球,他们每人所用的钱正好相等,1个足球的价钱相当于几个网球的价钱?
教学反思:
通过本节课的练习,使学生进一步巩固复习了两位数乘两位数的笔算方法(不进位),并能正确、熟练地进行笔算。在实际练习中,学生能正确、熟练地进行笔算和会解决实际问题,提高了学生列竖式计算的能力。
教案笔算乘法10
教学内容:
教材第24、25页练习五第4--7题。
教学目标:
1、使学生进一步掌握笔算乘法的规则,能正确地、比较熟练地笔算一个数乘一位数的乘法中需要连续进位的计算。
2、使学生结合连续进位的笔算乘法的计算,进一步熟悉连续两问应用题的数量关系,能正确解答有关的连续两问应用题。
教学准备:
口算卡片
教学过程:
一、口算
1、表内乘法练习
4×5=
3×8=
6×7=
9×9=
6×5=
4×8=
9×3=
5×5=
8×3=
指名一人板演,其余做在书上。
学生计算后,集体订正。
二、笔算练习
1、笔算下面两题
436×67×185
(1)指名2人板演,其余学生分两组练习。
(2)集体订正时,让学生口述计算过程。
(3)笔算乘法的时候,要注意些什么?
2、改错题
出示一些学生的错题。
学生仔细观察,找一找错在哪里?并分析错误原因。
学生独立改正。
3、笔算比赛
小组进行笔算比赛:
比赛规则:每个小组的.同学,每人做一题,从第一个同学开始做,依次往后传,速度最快并且全对的小组获胜。
三、应用题练习
1、出示练习五第7题。
(1)读题。理解题意。
(2)要求上午一共去了多少人?你准备怎样列式计算?要求一天一共去了多少人呢?
(3)学生独立计算。
(4)集体订正。
2、小结:解答连续两问的应用题,要注意些什么?
四、课堂作业
练习五第6题。
教案笔算乘法11
教学内容:
教材第50-51页练习十一
教学目标:
1、复习巩固两位数乘两位数的进位乘法。
2、正确计算两位数乘两位数的进位乘法,并能正确解决实际问题。
教学重点:
正确计算并体验数学知识在生活中的运用。
教学难点:
正确计算并体验数学知识在生活中的运用。
教学准备:
多媒体课件
教学过程:
一、复习整理
1、复习两位数乘两位数的进位乘法。
教师板书:37×82 65×31 59×64 39×43
让学生先做题,并说一说这四道题的共同点是什么
让学生独立在本上完成这四道题,请四名阩到黑板上完成,完成后,指名学生说一说计算的过程。教师在这个过程中要巡视指导,让学生注意计算的准确性和书写的规范性。让学生意识到好的书写是正确计算的基础。
2、教师总结:今天我们主要复习的是两位数乘两位数的进位乘法,进位乘法和不进位乘法的计算过程完全一样,只不过进位乘法是每位相乘满几十就要向前一位进几,在进位计算的过程中注意书写要规范、认真。
二、巩固练习
1、笔算。
76×1845×3689×4638×21
可以让学生任选两题计算,计算完后同桌互相讲述计算过程,互相订正结果和书写是否规范,然后老师指名学生把练习本拿来集体订正,做得又对又好的同学将一枚小动物印章。
让学生在书中完成第51页第6题。教师引导学生看一看蜜蜂应该落在哪朵向日葵上采花蜜,请同学们赶快帮助蜜蜂找到要采蜜的花。
让学生用连线的形式帮助蜜蜂找到要采蜜的花,并鼓励学生“看谁找得又对又快”。
学生完成后集体订正,并请找得又对又快的同学介绍方法,开阔学生解决问题的`思路。
2、解决问题。(让学生独立完成第51页的第7、第8题)
(1)指名让学生说一说题意。
(2)独立在练习本上完成这两道题。
(3)通过集体订正,及时改正不正确的解答方法或计算结果。
让学生看第50页的第4题。
(1)读题,并说明题意。
(2)说一说,这道题和刚才两道题的相同点和不同点。
(都是两位数乘两位数的乘法题,但这道题要解决的是一套16元,56套一共多少钱?所以“每套12张”这个数据信息可以不用)
(3)学生独立完成,集体订正。
三、课堂作业新设计
1、用竖式计算下列各题。
26×3568×5318×2448×7924×28
2、一种邮票每套14张,售价38元,今天上午卖出20套,下午卖出15套,这一天共卖了多少元?
四、思维训练
1、说一说,下面各题错在哪里,把错误的改正过来。
8 6 2 3 1 8
×7 8 ×1 7 ×2 5
6 4 8 1 6 1 9 0
6 0 2 2 3 2 6
6 6 6 8 1 8 4 3 5
2、菜园收了36筐白菜,连筐共重1728千克,每筐白菜重43千克,你知道这些筐有多重吗?
教学反思:
通过本节课的复习和练习,学生学会利用估算、只计算个位的乘积的方法解决问题,在计算中让学生体会到了所学知识的价值,培养学生灵活运用所学的计算知识解决问题的能力。
教案笔算乘法12
教材分析:
本单元是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法、笔算乘法。
本单元的口算乘法主要包括两项内容,第一项内容是整十、整百数乘整十数。它是在口算整十、整百数乘一位数的基础上进行教学的。第二项内容是估算,即两位数乘两位数的估算。它是在学生学过两、三位数乘一位数的估算和掌握了乘法的基本口算方法的基础上教学的。口算是笔算的基础,也是估算的基础。教材先安排口算,在扩大学生的口算范围的同时,为学生学习新的估算和两位数乘两位数笔算方法做好必要的准备。并且,在估算和笔算教学活动中,又可以进一步巩固口算。这样,有利于培养、提高学生的计算能力。
本单元的笔算乘法的内容是两位数乘两位数,是在学习了笔算多位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。接着,编排进位的,让学生经历两位数乘两位数需要进位的笔算过程,帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
本单元加强了“解决问题”的教学。首先,把计算内容都置于实际生活的背景之下,如送报纸(送信)、估座位、购书等。让学生在现实问题情境中理解计算的意义和作用,探讨计算方法。然后,为学生提供生动有趣、有意义的、联系生活的情境材料,让学生运用所学的计算方法解决实际问题。计算教学与解决问题教学有机地结合在一起,有利于学生体会计算的作用,感受数学与现实生活的密切联系。并且,对于培养学生用数学解决问题的能力和良好的数感是十分有利的。
教学目标:
1、使学生会口算整十、整百数乘整十数,会口算两位数乘整十、整百数(每位乘积不满十)。
2、使学生经历两位数乘两位数的计算过程,掌握两位数乘两位数的计算方法。
3、使学生能结合具体情境进行乘法估算,并解释估算的过程。
4、使学生能够运用所学的知识解决生活中的简单问题,感受数学在日常生活中的作用。
重点难点:
两位数乘两位数笔算
第四课时
笔算乘法(不进位)
教学内容:
教材第63~64页例1及做一做,练习十五第1题。
教学目标:
1、使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
2、能正确地进行计算,培养学生的分析,归纳能力。
3、在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
重点难点:
初步理解和掌握两位数乘两位数的笔算乘法的计算方法,能正确地进行计算。
教具准备:
课件
教学过程:
一、复习引入
1、计算
提问:用一位数乘多位数,我们该怎样计算?
小结:在计算一位数乘多位数时,用这个一位数依次去乘第一个因数的哪一位几十就向前一位进几。
2、口算
27×20
82×40
52×60
12×90
18×30
24×50
19×70
53×20
提问:两位数乘整十数你是怎样口算的。
二、快乐尝试,探索新知
1、课件出示教科书第62页的例题1。
(1)课件出示主体图,根据画面内容,口头编一道题例题1:妈妈到书店买了一套书,共12本,每本24元妈妈一共要付多少钱?
(2)分析:题目的已知条件和问题分别是什么?要求妈妈一共要付多少钱?该怎样列式?
4×12(为什么用乘法计算?)
教师:24乘2,我们已经回算,23乘12我们还没学过,这是用两位数乘的乘法,这就是我们今天要学的内容。
提问:谁能把24乘12转化成我们已学过的知识呢?以4人为一小组讨论。
(3)汇报:一种可以把12本书分成10本和2本两部分,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来的.就是妈妈要付的钱。 教师:刚才我们求妈妈买12本书用288元,计算时一共用了3个竖式,大家想一想,我们能不能把这3个竖式给并起来写成一个竖式呢?
(4)讲解24乘12竖式
刚才的一不我们是先算什么?怎样算?教师讲评时用纸把第二个因数十位上的“1”盖住。那计算2乘24先算什么?再算什么?先算2乘4表示8个一,再算2乘2表示4个十,合起来是48,在48的旁边注明24×2的积。此时,教师揭去盖在第二个因数十位“1”的纸,并问
第二步要再算什么?怎样算?(第二步算的是10本书一共多少钱,用10乘24,得240,在240的旁边注明24×10的积)
教师对着竖式说明:十位上的1表示10,所以用十位的1乘24就是用10乘24,先用10乘4得40,4要写在十位上,个位写0,再用10去乘2,得20,但这个2表示2个十,10乘2得到的20应该表示20个十,20个十就是200,所以这个2必须写在百位上,因此,要在240的旁边主抿4×10的积。
第三步算的是什么?(把10本书的钱和2本书的钱加起来,也就是把48和240加起来,得288。) 说明:在把两个乘积加起来的时候,个位上是计算8加0,0只起占位作用,为了简便,这个零可以省略不写,边说边把0擦掉。
请一个同学复述一遍竖式计算的过程。
(5)提问:这个竖式同前面的三个竖式有没有联系?哪种方法更简便?
2、议一议:怎样笔算两位数乘两位数?
3、引导小结,归纳笔算方法。
三、巩固运用
完成教科书第63页的做一做。
1、先看23×12,提问,两个因数分别是多少?
69是用哪位数与第一个因数相撤的积,下一步应该用哪位数去乘第一个因数?乘出的积是多少? 23乘13得多少?
2、其余的题目独立完成,要求列竖式,最后教师讲评。
四、课堂总结
本节课我们学习了什么?你有哪些收获?
五、课堂作业
练习十五第1题。
教案笔算乘法13
教学内容:
第63页例1,做一做,练习十五1、2题。
教学目标:
1、让学生经历两位数乘两位数的计算方法的全过程,体验计算方法的多样化。
2、通过比较各种方法的优点和不足,寻找最佳方法,训练学生掌握优化策略的思想方法。
3、使学生能够运用所学知识解决生活中的简单问题,感受数学在日常生活中的作用。
教学重点:
联系实际问题理解笔算乘法的算理,并掌握计算的方法。
教学难点:
理解算理
教学过程:
一、创设情境,生成问题
1、口算:10×6 8×60 12×2
700×8 12×4 6×500
2、笔算:12×4 180×3 105×7 832×9
3、谈话:同学们,你们有过和爸爸、妈妈一块儿购物的经历吧。在购物的时候,你帮助爸爸、妈妈算过一共需要付多少钱吗?请同学们看这里的购书情境。(出示例1购书的情境图)。
二、探索交流,解决问题
1、出示例1的.画面,让学生观看图画内容。让学生说一说。
你发现了什么信息?你能提出什么问题?
请学生说一说用什么方法解决这个问题,根据乘法的意义列出算式为:24×12。
2、各组讨论:怎样计算14×12。
请把想出的计算方法写在纸上。提出要求:
① 介绍自己的计算方法时,要把计算过程说清楚。
②要认真倾听别人的介绍,想一想他这样算有没有道理。
③把正确的方法确定下来。
3、组织沟通。
(1)口算
各组展示本组的算法。不容易说明白的,就写在黑板上。
方法一:
14×10=140
14×2=28
140+28=168
多让学生说一说口算的过程和方法。
(2)同学们会口算了,会用竖式计算吗?试着算一算。师巡视辅导。
(3)学生展示汇报,据生答完成板书。再现竖式,理清笔算过程及算理:先用个位上的2乘14,得28;再用十位上的1乘14,得14。设问:这个14表示……接着,边叙述边书写:它表示14个十,是140,是14乘10的积。个位的0不写,4要对着十位。然后,把两次乘得的数相加,算出两个因数相乘的积。
边叙述、对话,边书写成:
方法二:
1 4
x1 2
————
2 8 ……14×2的积
1 4 ……14×10的积(个位的0不写)
————
1 6 8
3、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)老师对学生发表的意见作以肯定或补充。
(3)重点评议笔算,写算法时应该注意什么。
研讨竖式每一步计算的方法,再现笔算过程。重点让学生说一说为什么要做到数位对齐,数位应该如何对齐。
4、小结,笔算乘法的方法。先请多个学生说一说然后总结:笔算两位数乘两位数,先用第二个因数个位上的数去乘,乘得的数的末位与因数的个位对齐;再用十位上的数去乘,乘得的数的末位与因数的十位对齐。最后把两次乘得的数加起来。
三、巩固应用,内化提高
1、尝试练习。
用竖式计算63页“做一做”的8道题。请几名学生上黑板板演,讲评。
2、独立完成练习十六第1题,重点辅导后进生。
3、判断并改正:
21 13 34 23
×12 ×22 ×11 ×12
42 26 34 46
21 26 34 23
252 52 374 69
() () () ()
4、我会解决:植树节到了,同学们去植树,一共种植了12行,每行有21棵,请问同学们一共植了多少棵树?
四、回顾整理,反思提升
1、请学生讨论笔算乘法时要注意什么问题,并沟通。
2、老师强调:用竖式计算时,每次乘得的数的末位应当和那一位对齐。还要注意记住进位数,精确处置进位问题。
板书设计:笔算乘法
方法一:
14×10 = 140
14×2 = 28
140+28 = 168
方法二:
1 4
× 1 2
————
2 8 ……14×2的积
1 4 ……14×10的积(个位的0不写)
————
1 6 8
教案笔算乘法14
教学目标
1、让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化。
2、通过比较各种方法的优点和不足,寻找最佳方法,训练学生掌握优化策略的思想和方法。
3、学会两位数乘两位数的笔算方法。
教学过程
一、创设情境,提出问题
出示插图今天妈妈带小利去买书,他一共要付出多少钱?
1、请你先帮他估一估,大约付多少钱?
2、怎样才能知道估算的钱数最接近正确答案呢?这就需要我们准确的计算出24×12的.得数,今天这节课我们就来研究两位数乘两位数的笔算乘法。
二、探索尝试,寻找方法÷
1、独立思考,尝试解决问题
你能想办法算出得数吗?试试看
2、组内交流,整理方法
3、全班汇报,根据学生的回答进行板书
⑴24+24+24+……+24=288
⑵12+12+12+……+12=288
⑶24×2×6=288
⑷24×3×4=288
⑸12×6×4=288
⑹12×8×3=288
⑺20×12+4×12=288
………
4、方法归类
连加,连乘,拆数
5、比较一下哪种方法比较简便?
学生讨论
拆数使用比较广泛,因为每个两位数都可以拆成两数的和。
6、研究笔算的方法
在研究刚才这些方法时,有些同学却用了跟这三中不一样的方法,就是竖式计算。
你们知道每一步的意思吗?学生讨论交流
2424
×12×12
48……2×24的积48……2×24的积
24……10×24的积
你发现了什么?(拆数)
7、教师讲解笔算方法
是不是所有的两位数乘两位数都可以用竖式计算?
计算时要注意什么?(数位)
三、巩固法则,推广应用
游戏:智闯马虎宫,找找开门密码
23×1341×2123×31
教学反思
教案笔算乘法15
教学目标
知识与技能:
经历多位数乘一位数的计算过程,初步学会乘法竖式的书写格式。
过程与方法:
理解竖式计算的思路和方法。
情感态度与价值观:
使学生能够运用所学的知识解决日常生活中的简单问题。
教学重难点
教学重点:多位数乘一位数的计算法法。
教学难点:乘法竖式的书写格式,了解竖式每一步计算的含义。
教学工具
课件
教学过程
1.复习导入
口算 估算
20×3 = 97×4 ≈
300×4= 215×6≈
6×500= 489×7≈
7×800= 316×6≈
课件出题插图
三个小朋友正在准备画画,他们每人都有一盒彩笔,每盒12支,他们一共有多少支彩笔?
师:怎么计算他们一共有多少支彩笔呢?今天我们一起学习笔算乘法。
板书课题:笔算乘法
2.探究新知
学习例1
指名读题目。
师:用什么方法计算?怎么列式?
自主探索,解决问题。
汇报交流:
12×3= 36 (枝)
师:为什么要这样列式呢?36这个结果是怎么得到的呢?
师:12×3表示什么意思?
这道题与我们以前学过的.乘法计算有什么不同?
小组合作探讨。
教师巡视了解各小组的情况,尤其鼓励学习有困难的学生,要积极参与小组活动。对及个别的学生给予个别指导。
(1)进行乘法竖式计算时数位要注意怎样书写?
(2)应该从哪一位乘起?
(3)每一次乘得积的位置该怎样呢?为什么?
(4)每次乘得后的积表示的意义是什么?
小组汇报交流:
方法一:可以把12×3看成3个12相加。
方法二:把12分成10和2分别与3相乘,再把结果相加。
10×3=30(枝)
2×3=6(枝)
30+6=36(枝)
也可以用竖式
方法三:
师:考考大家,大家想一想,如果列竖式计算213×3,怎么计算呢?
小组讨论,汇报交流:
梳理小结:
计算多位数乘一位数竖式计算时:
1、相同数位要对齐,要从各位乘起。
2、从个位起,用一位数分别乘多位数的每一位
3、乘得的积写在横线的下面与相应的数位对齐。
火眼金睛
师:学校买了4个电水壶,一个122,一共用去多少钱?
指名读题。
独立完成。
一辆校车可载客21个学生,学校共有4辆这样的校车,可载学生多少人?
独立思考。
附答案:21×4=48(个)
小刚上学骑自行车,每分钟骑112米,他从家到学校需要骑4分钟,小刚家距离学校多少米?
3.拓展提升
共有6个单元,每个单元住11户,这栋楼房共住多少户人家?
丽丽看一本总共365页的连环画,每天看21页,连续看了4天,一共看了多少页?还剩多少页?
附答案:21× 4=48(页)
365-48=317(页)
课后小结
a提问:
这节课你学到了什么?
b师生总结
1、学会两位数乘一位数乘法竖式的书写与计算。
2、能够用运所学的乘法知识解决生活中的实际问题。
板书
笔算乘法(一)
个位:8×3=24,个位上填4,再向前一位进2。
5 4 十位: 1×3=3,3+2=5,十位上填5。
用多位数每一数位上的数分别乘这个一位数,再把所得的积相加。
乘的顺序:先从个位乘起,哪一位上的积满几十,就要向前一位进几。
【教案笔算乘法】相关文章:
笔算乘法教案09-13
《笔算乘法》教案08-21
《笔算乘法》教案08-30
《笔算乘法》教案优秀11-21
小学《笔算乘法》教案11-13
笔算乘法进位教案07-27
笔算乘法教案(精选16篇)07-18
笔算乘法教案15篇09-27
《笔算乘法》教学反思05-26
《笔算乘法》教学反思10-16