高中数学说课稿

时间:2023-01-06 12:39:37 数学说课稿 我要投稿

高中数学说课稿【推荐】

  作为一位兢兢业业的人民教师,就有可能用到说课稿,通过说课稿可以很好地改正讲课缺点。那么优秀的说课稿是什么样的呢?下面是小编精心整理的高中数学说课稿,仅供参考,欢迎大家阅读。

高中数学说课稿【推荐】

高中数学说课稿1

  一、教材分析

  1.教材所处的地位和作用

  本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。

  2 教学的重点和难点

  重点:两种排序法的排序步骤及计算机程序设计

  难点:排序法的计算机程序设计

  二、教学目标分析

  1.知识与技能目标:

  掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

  2.过程与方法目标:

  能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

  3.情感,态度和价值观目标

  通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。

  三、教学方法与手段分析

  1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、学法分析

  模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。

  五、教学过程分析

  一、创设情境

  提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢?

  通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法

  二、探索新知

  这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题:

  (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?

  (2)冒泡法排序中对5个数字进行排序最多需要多少趟?

  (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?

  提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。

  三、知识应用

  例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序

  (根据刚刚提问所总结的方法完成解题步骤)

  练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.

  (及时将学到的知识应用,有利于知识的掌握)

  例2 设计冒泡排序法对5个数据进行排序的程序框图.

  (在之前所学习知识的基础上画出程序框图,然后给出一个思考题)

  思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?

  (之后出一个练习题,找出思考题的答案)

  练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。

  (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。)

  四、课堂小结:

  (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤

  (2两种排序法的计算机程序设计

  (3)注意循环语句的使用与算法的循环次数,对算法进行改进。

  通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

高中数学说课稿2

  尊敬的各位专家、评委:

  大家好!

  我是卢龙县木井中学数学教师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

  问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

  [设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

  问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

  教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

  [设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

  (四)强化理解,简单应用

  下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

  [设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

  我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

  问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

  [设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

  强化练习

  让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

  问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

  (五)小结归纳,深化拓展

  1、正弦定理

  2、正弦定理的证明方法

  3、正弦定理的应用

  4、涉及的数学思想和方法。

  [设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

  (六)布置作业,巩固提高

  1、教材10页习题1.1A组第1题。

  2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

  证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

  [设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

高中数学说课稿3

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

  难点:在可行域内,用图解法准确求得线性规划问题的最优解。

  二、目标分析:

  在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

  域和最优解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的最优解.

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

  1、创设情境,提出问题:

  在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

高中数学说课稿4

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

  根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

  教学重点:正弦定理的资料,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

  二、教法

  根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

  三、学法:

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,构成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  学生板演,教师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

高中数学说课稿5

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿6

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性。

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性。

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。

  三、 教学过程

  教学

  环节

  教 学 过 程

  设 计 意 图

  问题

  情境

  (播放中央电视台天气预报的音乐)

  满足在定义域上的单调性的讨论。

  2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。

  3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。

  4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

高中数学说课稿7

  一、地位作用

  数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

  基于此,设计本节的数学思路上:

  利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

  二、教学目标

  知识目标:1)理解等比数列的概念

  2)掌握等比数列的通项公式

  3)并能用公式解决一些实际问题

  能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

  三、教学重点

  1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

  2)等比数列的通项公式的推导及应用

  四、教学难点

  “等比”的理解及利用通项公式解决一些问题。

  五、教学过程设计

  (一)预习自学环节。(8分钟)

  首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

  回答下列问题

  1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

  2)观察以下几个数列,回答下面问题:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

  ①有哪几个是等比数列?若是公比是什么?

  ②公比q为什么不能等于零?首项能为零吗?

  ③公比q=1时是什么数列?

  ④q>0时数列递增吗?q<0时递减吗?

  3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

  4)等比数列通项公式与函数关系怎样?

  (二)归纳主导与总结环节(15分钟)

  这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

  通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”;

  ②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

  ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

  通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

  法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

  法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

高中数学说课稿8

  教材地位及作用

  本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

  学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

  教学重点

  理解古典概型的概念及利用古典概型求解随机事件的概率。

  根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。

  教学难点

  如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。

  教学目标

  1.知识与技能

  (1)理解古典概型及其概率计算公式,

  (2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  2.过程与方法

  根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

  3.情感态度与价值观

  概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

  根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。

  教学过程分析

  一,提出问题引入新课

  在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:

  试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

  试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

  在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。

  教师最后汇总方法、结果和感受,并提出问题?

  1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

  不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

  2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

  学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。

  通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

  二,思考交流形成概念

  在试验一中随机事件只有两个,即"正面朝上"和"反面朝上",并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是;

  在试验二中随机事件有六个,即"1点"、"2点"、"3点"、"4点"、"5点"和"6点",并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是。

  我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  基本事件有如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  特点(2)的理解:在试验一中,必然事件由基本事件"正面朝上"和"反面朝上"组成;在试验二中,随机事件"出现偶数点"可以由基本事件"2点"、"4点"和"6点"共同组成。

  学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。

  让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。

  三,思考交流形成概念

  例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。

  我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。

  (树状图)

  解:所求的基本事件共有6个:

  ,,,

  ,,

  观察对比,发现两个模拟试验和例1的共同特点:

  试验一中所有可能出现的基本事件有"正面朝上"和"反面朝上"2个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有"1点"、"2点"、"3点"、"4点"、"5点"和"6点"6个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  1,试验中所有可能出现的基本事件只有有限个;(有限性)

  2,每个基本事件出现的可能性相等。(等可能性)

  我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

  思考交流:

  (1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

  答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的"可能性相同",但这个试验不满足古典概型的第一个条件。

  (2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环。。。。。。命中5环和不中环。你认为这是古典概型吗?为什么?

  答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环。。。。。。命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。学生互相交流,回答补充,教师归纳。将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。

  两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

  四,观察分析推导方程

  问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

  分析:

  实验一中,出现正面朝上的概率与反面朝上的'概率相等,即

  P("正面朝上")=P("反面朝上")

  由概率的加法公式,得

  P("正面朝上")+P("反面朝上")=P(必然事件)=1

  因此P("正面朝上")=P("反面朝上")=

  即试验二中,出现各个点的概率相等,即

  P("1点")=P("2点")=P("3点")

  =P("4点")=P("5点")=P("6点")

  反复利用概率的加法公式,我们有

  P("1点")+P("2点")+P("3点")+P("4点")+P("5点")+P("6点")=P(必然事件)=1

  所以P("1点")=P("2点")=P("3点")

  =P("4点")=P("5点")=P("6点")=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P("出现偶数点")=P("2点")+P("4点")+P("6点")=++==

  即根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

  教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。

  鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

  提问:

  (1)在例1的实验中,出现字母"d"的概率是多少?

  出现字母"d"的概率为:

  提问:

  (2)在使用古典概型的概率公式时,应该注意什么?

  归纳:

  在使用古典概型的概率公式时,应该注意:

  (1)要判断该概率模型是不是古典概型;

  (2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。除了画树状图,还有什么方法求基本事件的个数呢?

  教师提问,学生回答,加深对古典概型的概率计算公式的理解。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  四,例题分析推广应用

  例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  分析:

  解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。

  解:

  这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:

  课后思考:

  (1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  (2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?

  学生先思考再回答,教师对学生没有注意到的关键点加以说明。

  让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  巩固学生对已学知识的掌握。

  例3同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个"有序实数对"来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(可由列表法得到)

  由表中可知同时掷两个骰子的结果共有36种。

  (2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:

  (1,4),(2,3),(3,2),(4,1)

  (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。

  引导学生用列表来列举试验中的基本事件的总数。

  利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。

  培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  五,探究思考巩固深

  化问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

  如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为

  这就需要我们考察两种解法是否满足古典概型的要求了。

  可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件,另外还可以利用Excel展示第二种方法中构造的21个基本事件不是等可能事件。从而加深印象,巩固知识。

  要求学生观察对比两种结果,找出问题产生的原因。

  通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

  六,总结概括加深理解

  1.我们将具有

  (1)试验中所有可能出现的基本事件只有有限个;(有限性)

  (2)每个基本事件出现的可能性相等。(等可能性)

  这样两个特点的概率模型称为古典概率概型,简称古典概型。

  2.古典概型计算任何事件的概率计算公式

  3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏。

  学生小结归纳,不足的地方老师补充说明。

  使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  七,布置作业

  P123练习1、2题

  学生课后自主完成。

  进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

  八,板书设计教法与学法分析教法分析

  根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

  学法分析

  学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  评价分析评价设计

  本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。

  在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。整个教学设计的顺利实施,达到了教师的教学目标。

高中数学说课稿9

  一、本节内容的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特内容。这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的能力

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的"发现"和接受,进而完成知识的内化,使书本的知识成为自己的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?

  引伸2:若完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?

  这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。

  板书分类计数原理内容:

  完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理内容)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么,完成这件事共有

  N=m1×m2×…×mn

  种不同的方法。

  同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1) 各步骤相互依存,只有各个步骤完成了,这件事才算完成;

  (2) 根据问题的特点在确定的分步标准下分步;

  (3) 分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1) 每一个三位数是由什么构成的?(三个整数字)

  (2) 023是一个三位数吗?(百位上不能是0)

  (3) 组成一个三位数需要怎么做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4) 怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.

  答:可以组成100个三位整数。

  (教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。

  教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4.学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7.

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

  (提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

  (提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。

高中数学说课稿10

  各位老师:

  大家好!

  我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  "简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。

  2教学的重点和难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  二、教学目标分析

  1.知识与技能目标:

  正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2.过程与方法目标:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3.情感,态度和价值观目标

  通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性

  三、教学方法与手段分析

  为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。

  四、教学过程分析

  (一)设置情境,提出问题

  例1:请问下列调查是"普查"还是"抽样"调查?

  A、一锅水饺的味道B、旅客上飞机前的安全检查

  c、一批炮弹的杀伤半径D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有"抽样"

  「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。

  (二)主动探究,构建新知

  例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。

  「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。

  例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。

  请一位同学说说例2采用"抽签法"的实施步骤。

  「设计意图」

  1、反馈练习,落实知识点,突出重点。

  2、体会"抽签法"具有"简单、易行"的优点。

  〈屏幕出示〉

  例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验

  提问:这道题适合用抽签法吗?

  让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例2采用"随机数表法"的实施步骤。

  「设计意图」

  1、体会随机数表法的科学性

  2、体会随机数表法的优越性:避免制签、搅拌。

  3、反馈练习,落实知识点,突出重点。

  ㈢课堂小结:

  1.简单随机抽样及其两种方法

  2.两种方法的操作步骤

  (采用问答形式)

  「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

  ㈣布置作业

  课本练习2、3

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿11

  一、说教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。

  2、 教学目标

  (1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;

  b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。

  (2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;

  b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。

  (3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;

  b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

  3、重点和难点

  重点:集合的概念,元素与集合的关系。

  难点:准确理解集合的概念。

  二、学情分析(说学情)

  对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。

  三、说教法

  针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。

  四、学习指导(说学法)

  教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。

  五、教学过程

  1、引入新课:

  a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。

  b、介绍集合论的创始者康托尔

  2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。

  3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。

  教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。

  4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。

  5、 集合的符号记法,为本节重点做好铺垫。

  6、 从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。

  7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。

  8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。

  9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。

  10、知识的实际应用:

  问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。

  11、课堂小节

  以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。

  六、评价

  教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。

  七、教学反思

  1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。

  2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。

  八、板书设计

高中数学说课稿12

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为

  教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

  二、说教法和学法

  接下来则是说教法、学法

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究

  让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线 的距离等于定长 的所有的点;

  (4)方程 的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作aA

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作 N

  正整数集:

  整数集:记作 Z

  有理数集:记作 Q 实数集:记作 R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移 变式训练

  1.下列指定的对象,能构成一个集合的是

  ① 很小的数

  ② 不超过30的非负实数

  ③ 直角坐标平面内横坐标与纵坐标相等的点

  ④ π的近似值

  ⑤ 所有无理数

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题 课本习题1.1—1、2、3.

  2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。

  设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示

  4.范例研究

高中数学说课稿13

  各位评委,老师们:大家好!

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一说教材

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二说教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三说教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段———提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

  ①向量与是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形的充要条件是=;

  ⑤模为0是一个向量方向不确定的充要条件;

  ⑥共线的向量,若起点不同,则终点一定不同.

  [练习2]下列命题正确的是( )

  A.a与b共线,b与c共线,则a与c也共线

  B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

  C.向量a与b不共线,则a与b都是非零向量

  D.有相同起点的两个非零向量不平行

  Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

  在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

  例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

  具体教学安排如下:

  (1)分析解决问题

  先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

  (2)归纳解题方法

  主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相

  等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

  Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

  本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

  具体的教学安排如下:

  (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

  在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

  类比,数形结合,等价转化等进行强调。

  (2)布置课后作业

  阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。

高中数学说课稿14

  各位老师:

  大家好!

  我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

  2.教学的重点和难点

  重点:理解古典概型及其概率计算公式。

  难点:古典概型的判断及把一些实际问题转化成古典概型。

  二、教学目标分析

  1.知识与技能目标

  (1)通过试验理解基本事件的概念和特点

  (2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

  2、过程与方法:

  经历公式的推导过程,体验由特殊到一般的数学思想方法。

  3、情感态度与价值观:

  (1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

  (2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

  三、教法与学法分析

  1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

  2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

  ㈠创设情景、引入新课

  在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

  试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

  试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

  在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

  1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

  不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

  2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

  「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

  ㈡思考交流、形成概念

  学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

  [基本事件有如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

  例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

  先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

  「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

  观察对比,发现两个模拟试验和例1的共同特点:

  让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

  [经概括总结后得到:

  (1)试验中所有可能出现的基本事件只有有限个;(有限性)

  (2)每个基本事件出现的可能性相等。(等可能性)

  我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

  「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

  ㈢观察分析、推导方程

  问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

  教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

  「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

  提问:

  (1)在例1的实验中,出现字母"d"的概率是多少?

  (2)在使用古典概型的概率公式时,应该注意什么?

  「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  ㈣例题分析、推广应用

  例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  学生先思考再回答,教师对学生没有注意到的关键点加以说明。

  「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。

  例3同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。

  「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  ㈤探究思想、巩固深化

  问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

  要求学生观察对比两种结果,找出问题产生的原因。

  「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

  ㈥总结概括、加深理解

  1.基本事件的特点

  2.古典概型的特点

  3.古典概型的概率计算公式

  学生小结归纳,不足的地方老师补充说明。

  「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  ㈦布置作业

  课本练习1、2、3

  「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

高中数学说课稿15

  今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

  一、说教材

  1、本节在教材中的地位和作用:

  本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

  2. 教学目标确定:

  (1)能力训练要求

  ①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

  ②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

  (2)德育渗透目标

  ①培养学生善于通过观察分析实物形状到归纳其性质的能力。

  ②提高学生对事物的感性认识到理性认识的能力。

  ③培养学生“理论源于实践,用于实践”的观点。

  3. 教学重点、难点确定:

  重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

  难 点:培养学生善于比较,从比较中发现事物与事物的区别。

  二、说教学方法和手段

  1、教法:

  “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

  在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

  2、教学手段:

  根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

  三、说学法:

  这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

  四、 学程序:

  [复习引入新课]

  1.棱柱的性质:

  (1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的截面是全等的多边形

  (3)过不相邻的两条侧棱的截面是平行四边形

  2.几个重要的四棱柱:

  平行六面体、直平行六面体、长方体、正方体

  思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

  [讲授新课]

  1、棱锥的基本概念

  (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

  (2).棱锥的表示方法、分类

  2、棱锥的性质

  (1). 截面性质定理:

  如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

  证明:(略)

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

  的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  (2).正棱锥的定义及基本性质:

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  ①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

  ②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

  棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申:

  ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  (3)正棱锥的各元素间的关系

  下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

  引申:

  ①观察图中三棱锥S-OBM的侧面三角形状有何特点?

  (可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

  ②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

  (课后思考题)

  [例题分析]

  例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

  A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

  (答案:D)

  例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

  ﹙解析及图略﹚

  例3.已知正四棱锥的棱长和底面边长均为a,求:

  (1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

  ﹙解析及图略﹚

  [课堂练习]

  1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

  ﹙解析及图略﹚

  2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

  ﹙解析及图略﹚

  [课堂小结]

  一:棱锥的基本概念及表示、分类

  二:棱锥的性质

  截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  2.正棱锥的定义及基本性质

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

  相等,它们叫做正棱锥的斜高;

  (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  ③正棱锥中各元素间的关系

  [课后作业]

  1:课本P52 习题9.8 : 2、 4

  2:课时训练:训练一

【高中数学说课稿】相关文章:

高中数学的说课稿07-11

高中数学经典说课稿07-11

高中数学经典说课稿范文12-06

高中数学免费说课稿09-30

高中数学说课稿11-14

高中数学说课稿08-26

高中数学向量说课稿09-09

高中数学统计说课稿07-11

高中数学向量说课稿07-11

高中数学数列说课稿07-11