数学《一元一次不等式》说课稿
作为一名教师,往往需要进行说课稿编写工作,写说课稿能有效帮助我们总结和提升讲课技巧。说课稿应该怎么写呢?下面是小编整理的数学《一元一次不等式》说课稿,仅供参考,希望能够帮助到大家。
数学《一元一次不等式》说课稿1
尊敬的各位评委:
你们好!
我今天说课的内容是浙教版数学八年级上册第五章第3节《一元一次不等式》的第2课时。下面我从教材分析、教学方法和教学过程等几方面来谈谈我对本节课的理解和设计。
一、教材分析
(一)教材的地位与作用
本节课是学生在学习了一元一次不等式及其解的概念,解简单的一元一次不等式的基础上,对解一元一次不等式的进一步深入和拓展;另一方面,又为学习不等式的应用、函数等知识奠定了基础。鉴于这种认识,我认为本节课不仅有着广泛的应用,而且起着承上启下的作用。
(二)教学目标
知识与能力目标:掌握解一元一次不等式的一般步骤;会运用解一元一次不等式的基本步骤解一元一次不等式。
过程与方法目标:通过学生的观察、独立思考等过程培养学生归纳概括的能力。
情感与态度目标:通过获得用数学知识解决实际问题的成功体验,增强学生学习的自信心。
(三)教学重点难点
基于教学目标,我认为本节课的重点是:运用解一元一次不等式的一般步骤解一元一次不等式。
由于例2的步骤较多,容易发生错误,是为本节课的难点。
二、教学方法
我认为在教学中,要善于调动学生的`学习积极性,关注学生的学习过程。本节课我采用启发式,讲练结合的教学方法,让学生手脑并用,合作交流,自主探究。
三、教学过程
为了整体把握教材,构建高效课堂,我设计科一下流程:
复习引入—探究新知—巩固练习拓展新知—目标检测—归纳小结—作业布置,总共7个环节。
(一)复习引入
课件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。这两道题是上节课学过的知识,我估计学生能够解决。于是我给学生一定时间让他们自行完成,同时请两位学生上台板演。对照学生的解题过程,教师提问:“解这样的不等式的基本步骤是什么?根据学生的回答,教师及时板书:移项、合并同类项、两边同除以未知数前面的系数。(注:遇负数,不等号的方向改变,与方程的不同之处)现在再看以下两道题:
1.合作学习,根据已学过的知识,你能解下列一元一次不等式吗?
(1)5x>3(x-2)+2 (2)2m-3<(7m+3)/2
2.解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:
步骤根据
1去分母不等式的基本性质3
2去括号单项式乘以多项式法则
3移项不等式的基本性质2
4合并同类项,得ax>b,或ax
5两边同除以a(或乘1/a)不等式的基本性质3
3.例1.解不等式3(1-x)>2(1-2x)
解:去括号,得3-3x>2-4x
移项,得-3x+4x>2-3
合并同类项,得x>-1
4.例2.解不等式(1+x)/2≤(1+2x)/3+1
解:去分母,得3(1+x)≤2(1+2x)+6
去括号,得3+3x≤2+4x+6
移项,得3x-4x≤2+6-3
合并同类项,得-x≤5
两边同除以-1.得x≥-5
注:1.五个步骤要求当堂背出,同桌之间可以互相核对。
2.要求作业严格按照上述步骤进行。
三、课内练习
解下列不等式,并把解在数轴上表示出来:
(1)5x-3<1-3x
(2)3(1-3x)-2(4-2x) ≤0
(3)(2x-1)/4-(1+x)/6≥1
四、小结:1.解一元一次不等式的基本步骤。
2.不等式的解在数轴上的表示方法。
《一元一次不等式》的教学反思
本节内容是一元一次不等式组的基础。现对本节课从以下几方面进行反思:
一、课堂教学结构反思
本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。这样的程序符合学生的认知规律,教学取得了不错的效果。适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。
二、有效的课堂提问反思
复习旧知识的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:不等式的基本性质是什么?不等式的概念是什么?不等式的解是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。
三、有效的课堂参与反思
本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,过渡到一元一次不等式更一般的情况。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。
本节课较好的方面:本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;2.课程内容前后呼应,前面练习能够为后面的例题作准备。3.及时对学生学习的知识进行检查。4.对过去遗留的问题,如:去括号时出现符号错误,去分母是漏乘,系数花1时分子与分母倒了等等问题,在课堂巡视时,发现问题并及时纠正,使学生在典型错误中吸取教训。
不足方面:课容量少,留给学生自己独立思考,讨论的时间较少。课堂上没有发挥学生的力量,开展“生帮生”的活动。在课堂上没有做到尝试着少说,给学生留些自由发展的空间。设计的教学环节,也没有多思考一些学生的所想所做,真正做好学生前进道路上的引导者。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。
数学《一元一次不等式》说课稿2
一 说教材
《一元一次不等式》是人教版必修教材第 章第 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
二 说教学目标
根据本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,我将制定以下三个教学目标:
1. 了解一元一次不等式的概念;会解一元一次不等式。
2. 通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
3. 培养学生理论联系实际的思维能力及总结概括能。
三 说教学重、难点
根据教学大纲和新课程标准的要求我认为本节课的教学重点是让学生掌握一元一次方程的概念,并会类比解一元一次方程的步骤解一元一次不等式。
本节课有两个教学难点:把不等式中的未知数化为1这一步时,应根据不等式的.性质确定不等号的方向是否改变;会灵活运用一元一次不等式的概念及解法的知识解决相关的数学问题。
四说教法、学法
数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了趣事导入法、类比法。
根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法以提高学生自觉学习的习惯。
五说教学过程
在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。
1 回顾旧知,导入新课
首先通过鲁班造锯的故事引入课题,这个故事也正体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。
2 探究新知
在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的小问题题( 用不等式表示下列各式)得出4个一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再给出5个不等式让学生判断是否为一元一次不等式从而加深对概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。
3 巩固练习
通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。
4小结
设计一个问题 (议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。
注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。
5 作业布置
让学生把教材第126页第1题和第2题写在课堂作业本上以进一步巩固本节课的知识。
总之,本节课在教学时我采用的是故事导入法、类比数学思想方法。由古代著名的工匠鲁班经过茅草割手的事实类比发明了锯子导入课题,让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知识。
数学《一元一次不等式》说课稿3
今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。
一、教材理解
一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。
依据课标要求和教材内容,我确定本节的教学目标是
1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。
2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。
3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。
二、学情分析
我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。
教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。
在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。
三、设计思路
根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议:1、让学生经历数学知识的形成与应用过程;2、鼓励学生自主探索与合作交流;3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性;其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。
四、教学流程
本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。
一、提纲导学
教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的.目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。
学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。
二、交流展示
这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。
前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。
三、训练提升
通过前两个环节的实施,学生已经初步完成了本课时的学习目标,为了巩固学习成果,检测课堂学习效果,所以设计了这个环节。本环节包括练习和讲解两个环节,时间预设为练习10分钟,讲解8分钟。训练的题目为课本“想一想”、“做一做”中的问题。以上问题由学生独立完成,每组抽查两名学生在黑板上分别完成。提前
完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。
四、学习评价
教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。
数学《一元一次不等式》说课稿4
一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
本节课主要讲述的是一元一次不等式的概念及其解法。
在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。
不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。
二、说学情
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
(二)过程与方法
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
(三)情感态度价值观
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
(二)教学难点
一元一次不等式的解法。
五、说教法和学法
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,教师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的`不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-7>26如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习
第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+15>4x-1。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
数学《一元一次不等式》说课稿5
一、说教材的地位和作用
《 一元一次不等式》是人教版教材七年级第九章第二节内容,在此之前,学生们已经学习了不等式基本性质, 不等式的解集等知识 ,这为过渡到本节内容的学习起到了铺垫的作用。同时也是学生以后顺利学习一元一次不等式组有关内容的基础.因此,本节内容在本章中具有不容忽视的重要的地位。
二、说教学目标
根据本教材的结构和内容分析,结合着七年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:
1、 知识与技能:掌握一元一次不等式的概念且要会解一元一次不等式,能在数轴上表示一元一次不等式的解集.
2、过程与方法:通过学生观察,推理,类比,分析.得到得到一元一次不等式的概念,用数形结合的方法理解一元一次不等式的解集.
3、情感与态度:初步认识一元一次不等式的应用价值,发展学生分析问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
三、说教学的重、难点
本着课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。
教学重点:掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
重点的依据:“人人学有价值的数学”。因此,我确定这节课的重难点是看两方面:一是教学内容与教学目标;二是学生的认识水平。这节课的意图是让学生认识一元一次不等式,会解一元一次不等式,因此,这节课的重点为掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。
教学难点: 一元一次不等式的解法
难点的依据:不等式与方程一样是千变万化的,因此不等式的解法也不是一层不变的,如何类比一元一次方程的解法来解一元一次不等式是本节的一个难点。
为了讲清教材的重、难点,使学生能够达到本节内容设定的.教学目标,我再从教法和学法上谈谈:
四、 说教法
在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
学生知识现状分析: 七年级上学期学生已经掌握一元一次方程的解法,上一节课学生已初步会进行不等式的简单变形,但是在运用不等式性质3时容易出现错误。我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生的心理状况。当然教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。同时也体现了课改的精神。
基于本节课内容的特点,我主要采用了以下的教学方法:
1、直观演示法:
利用图片的投影等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2、活动探究法
引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。
3、集体讨论法
针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
五、说学法
让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。
六、教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
导入新课:(3—5分钟)
在这节课开始之初先出示两个一元一次方程,要求学生在回忆一元一次方程的基础上解出这两个方程并要求学生说出每一步的依据。这样为后面学习一元一次不等式的概念,及类比其解法埋下伏笔。在这之后,要求学生说出不等式的3条基本性质,增强课程连续性的情况下,引导学生进入本课知识的学习。
2.创设情境 导入新知
教师出示一些简单的不等式,要求学生观察分析,分组讨论这些不等式的共同特点。学生归纳总结出共同特点后,要求学生类比一元一次方程给这些不等式取名字。
通过观察,猜想,设置悬念,激发学生强烈的求知欲,要求学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。
3.类比推理 深化新知
在学生识别了什么是一元一次不等式后,出示例1(1):2(1+x)<3此不等式为一般不等式,要求学生先自主探索,尝试用解一元一次方程的解法来解这个不等式.教师在讲解时可以要求学生说出每一步的依据,让学生不等式的熟练掌握一般一元一次不等式的解法的同时理解一元一次不等式解法的真谛,同时为后面解复杂一元一次不等式做铺垫.出示例1(2). 此不等式相对于(1)的不等式而言是具有分母的的不等式,可以让学生先独立思考后用化归的思想将不等式化为一般不等式来解这个不等式.出示这两个不等式代表的是两种不等式的解法.教师在讲解的时候一定要给学生分析清楚,如何用划归的思想将不等式化为一般的一元一次不等式然后再求解.熟练掌握一元一次不等式的解法后,让学生运用上节课所学的知识在数轴上将其解集表示出来,利用数形结合,始解集更加形象直观.此环节的设置培养学生团结合作,类比推理的能力,让学生养成勤动笔,勤动脑的习惯.积累学生分析问题,解决问题的能力.
4.运用新知 形成能力
为了巩固本节课的教学效果,反馈学生学习的情况,本着学以致用的原则,设置了四道解不等式的练习题:
(1)5x+15>4x-1 (2) 2(x+5)>3(x-5)
(3) (4)
这四道题分三个类型,让学生熟练掌握刚学的知识.
根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。
课堂小结,强化认识。(3—5分钟)
课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解不等式在实际生活中的应用,并且逐渐地培养学生具有良好的个性。
4、板书设计
直观、系统的板书设计,还及时地体现教材中的知识点,以便于学生能够理解掌握
板书
1(1):2(1+x)<3 (2)
练习:
(1)5x+15>4x-1 (2) 2(x+5)>3(x-5) (3) (4)
5、布置作业。在学习了本节课的知识内容后,为了让每一个学生及时巩固这一节的内容,同时为下一课时做准备,教师要有区别的布置作业,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
课堂作业:126页1(1)(2)(3)(5)
(四). 课后反思
本节课的教学过程中,本着重视过程,主动建构,突出应用的原则,从学生已有认知出发,让学生主动地建构其新的认知结构,提升学生的智能,让学生形成良好的思维习惯.
数学《一元一次不等式》说课稿6
说教材的地位与作用
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。是继一元一次方程、二元一次方程组和一元一次不等式之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数的重要基础,具有承前启后的重要作用。
说教学目标
(一)、知识与能力
1.掌握一元一次不等式组以及一元一次不等式组的解集的概念。
2.会解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集。
(二)、过程与方法
1.创设情境,通过实例引导学生考虑多个不等式联合的解法。并总结一元一次不等式组的解与一元一次不等式的解之间的关系。 2.通过对典型例题的分析加深对结一元一次不等式组的认识。
(三)、情感、态度与价值观
1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
说教学重、难点
重点 1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的`情况。 2.一元一次不等式组的解法。
难点 灵活运用一元一次不等式组的知识解决问题。
(四)、说教学方法
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
(五)、说学生的学法:
学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。
六、说教学过程:
本节课我设计了七个活动。
活动一 创设情境 导入新课
1、通过多媒体图片(选择材料通俗易懂,易引起学生的兴趣)引入一元一次不等式组的概念:
活动二 引领学生 探索新知
2、一元一次不等式组
通过上面实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
活动三 范例讲解 学以致用
例1: 借助数轴,求下列不等式组的解集:
(1)、(2)、
(3)、 (4)、(分析由课件展示)
例2:解不等式组:(1)(学生板演,教师对照多媒体点评)
活动四:反馈练习 巩固提高
课堂练习:P48练习(学生板演,教师点评)
设计意图:这四道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。
活动五 数形结合 总结规律
一元一次不等式组的解集的确定规律:
(1)、多媒体演练
(2)、总结规律:
1. 同大取大, 2、.同小取小;
3、大小小大中间找, 4、大大小小解不了。
活动六:反思小结,体验收获
这节课我们学到了什么?谈谈自己的体会?
多媒体设计表格总结。
活动七: 知识反馈,布置作业
布置作业:为了让不同的人有不同的收获,我把作业分为选做题和必做题。
(一)、课本P49习题3
(二)、选做题:能力提升
1、若不等式组无解,则m的取值范围是。
2、若方程组的解是负数,求的取值范围。
七、教学设计说明与反思:
本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,从而进一步引入利用观察法、归纳法即可掌握求不等式解集的办法。
数学《一元一次不等式》说课稿7
一、 说教学目标
1. 了解一元一次不等式的概念;
2. 会解一元一次不等式。
3 通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
4、培养学生理论联系实际的思维能力及总结概括能。
基于对数学新课程标准的理解,数学是研究数量关系和变化规律的数学模型,可以帮助学生从数量关系的角度更准确、清晰地认识、描述和把握现实世界,体会数学思想,发展学生的思维水平。本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,
基于教学大纲和新课程标准的要求,本章的结构和教学内容分析,结合七年级学生的认知发展水平和心理特点,
基于对学情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
综上所述,我将本节课的.教学重点确定:会解一元一次不等式。教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;
二、说教法、学法
数学新课程标准指出,数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了复习导入法、演示法、讲解法、类比法。
三、说学法
根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法、练习法以提高学生自觉学习的习惯。
四、说教学过程
在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。
1、 回顾旧知,提出目标
首先通过不等式的基本性质和一元一次方程的复习引入课题,体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的目的。
2 探究新知
在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再让学生举几个一元一次不等式,从而加深对一元一次不等式概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。
3 巩固练习
通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。
4、归纳小结 达标检测
设计一个问题 (议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。
注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。
5 作业布置
让学生把教材第126页必做第1题和选做第2题写在课堂作业本上以进一步巩固本节课的知识。
总之,本节课在教学时我采用的是复习导入法、类比数学思想方法。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知,帮助学生认识自我,建立学习数学的信心。
【数学《一元一次不等式》说课稿】相关文章:
数学《一元一次不等式》说课稿(精选8篇)08-04
《一元一次不等式》说课稿06-26
数学《一元一次不等式》说课稿汇编7篇12-01
《一元一次不等式》说课稿(通用11篇)06-09
一元二次不等式说课稿12-02
七年级数学《一元一次不等式组》说课稿12-03