六年级数学上册教案

时间:2023-03-09 15:44:30 数学教案 我要投稿

【热门】六年级数学上册教案

  作为一位优秀的人民教师,常常要根据教学需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?以下是小编收集整理的六年级数学上册教案,希望能够帮助到大家。

【热门】六年级数学上册教案

六年级数学上册教案1

  【案例与反思】

  教学过程:

  一、课前准备:

  课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。

  二、课内交流、探究

  师:在储蓄的过程中,你搜集到哪些相关的知识?(学生分组汇报调查结果)

  (生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)、有关调查中遇到的困难、解决的方法和自己的感受)

  师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

  板书:利息与本金的比值叫做利率。

  利息=本金利率时间

  三、创设情景、体验储蓄

  1、创设情景

  师:同学们,张大爷是一个孤寡老人,他打算把自己多年来节省下来的1000元钱存入银行,定期为两年,由于他行动不便,你能帮助他进行储蓄吗?

  2、体验储蓄。根据刚才的汇报情况,安排教学过程。

  (1)学生拿出复制好的储蓄存款凭证进行填写。

  (2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。

  (3)、充分联系生活,设置储蓄密码。

  师:同学们,为了保证储蓄的安全,你认为应该用什么办法呢?

  学生:(经过讨论后回答)可以设置密码。

  师:设置什么样的密码比较好呢?

  (学生热烈进行讨论)

  生1:可以用存款人的生日。

  生2、可以用有纪念意义的日期。

  生3:比较容易记的数字。

  师:设置密码时,一般设置比较容易记忆的数字,可以用某人的生日或与他有关系的一些数字。

  师:请你们给张大妈设置一个密码。

  (4)保管好存折或存单。

  师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。

  四、运用知识、解决问题

  1、运用新知识解决问题。

  师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?

  (学生分组讨论计算,汇报情况)

  生1:10002.43%2=58.6(元)

  生2:10002.43%2=58.6(元)

  58.620%=11.72(元)

  58.6-11.72=46.88(元)

  生3:10002.43%2=58.6(元)

  58.6(1-20%)=46.88(元)

  师生集体讨论订正,教师强调利息的计算方法。

  师:储蓄到期时,张大妈实际领取本金和利息一共是多少?

  生:1000+46.88=1046.88(元)

  师生总结计算方法。

  2、巩固新知 学生进行练习

  五、课后实践、体验储蓄过程

  师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。

  教学与反思:

  本节课的教学设计能根据新的《课程标准》理念的要求,结合学生的生活实际,力求体现了以下几点教学思想:

  一、关注学生发展,整合教学目标

  新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。

  二、联系实际应用,重组教学内容

  长期以来,教学内容都是教师在遵循教材和大纲的基础上确立的,教师只关注教材、大纲和教学参考资料,忽视了学生的生活实际和生活背景,学生接受的归根到底只能算是数学知识。这种数学知识不能服务于学生的生活,更不能促进学生的发展。因此我们在教学中一定要加强课程内容与生活以及现代社会科技发展的联系,关注学生的兴趣和经验,精选终身学习必备的基础知识和技能。本节课充分联系学生的实际生活应用,重组教学内容,将课前调查、课后实践、怎样填写储蓄凭条、怎样设置密码等知识和本节课教学内容利息组合在一起。使学生在实际的应用中经历了储蓄的过程,充分理解了有关利息的知识。并在相关问题的解决中,相应地获得了终身发展必备的知识和技能。

  三、培养学生能力,开放教学过程

  学生各种能力的形成和发展是我们教学的首要任务。传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。本节课根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。课前让学生分组进行有关储蓄知识的调查,搜集有关相关的信息,这样培养了学生搜集信息的'意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力;课堂教学时让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力;课后又要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。

  四、针对学生差异,实施多元评价

  《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。

六年级数学上册教案2

  20xx年人教版六年级数学上册教案姓名:沈金鹏

  学号:134080303

  院、系:数学学院

  专业:数学与应用数学

  20xx年1月22日

  第二单元位置与方向

  教学目标:

  知识与技能:

  1.通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。2.会看简单的路线图,能根据路线图说出行走的方向和路线。

  过程与方法:

  1.通过解决实际问题,体会确定位置在生活中的应用。

  2.探索和发现确定位置的有效方法。

  情感态°价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  教学重点:

  通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。

  教学难点:

  在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。

  课时安排:

  六年级上册第二单元:位置与方向

  第1课:位置与方向㈠

  教学内容:教材第19、20页相关内容及练习题

  知识与技能:

  1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的

  方法。

  2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在

  平面图上画出物体的具体位置。

  过程与方法:通过小组合作交流探讨,掌握画图的方法。

  情感态度价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的'兴趣和自信心。

  重点:能根据任意方向和距离确定物体的位置。

  难点:根据描述标出物体在平面图上的具体位置。教学目标:教学重难点:

  教学方法:合作交流、共同探讨

  教师:多媒体课件,直尺、量角器等。教、学具准备:学生:直尺、量角器。

  教学过程:

  一、情景导入

  1.交流例题1中有关台风的消息。

  ⑴同学们听说过台风吗?你对台风有什么印象?

  ⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  师:听到这侧消息,你有什么感想?

  启发学生交流,引导学生关注台风的位置和动态。

  2.导入新课

  现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

  [板书课题:位置与方向(一)]

  【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

  二、探究新知

  ㈠教学题例1

  1.投影出示例题1。

  学生观察情境图,交流从图中信息?

  (启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

  2.交流确定台风中心具体位置的方法。

  ⑴让学生尝试说说台风中心的具体位置。

  ⑵教师结合学生的汇报情况进行引导。

  提问:东偏南30°是什么意思?

  (东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

  ⑶小结确定位置的方法。

  提问:如果只有一个条件,能够确定台风中心的具体位置吗?

  引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

  3.组织计算。

  师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市

  呢?

  学生独立计算,组织交流。

  600÷20=30(小时)

  (二)教学例题2

  1.投影出示例题2。

  提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

  2.尝试画图。

  ⑴学生独立思考怎样标出B市、C市的具体位置。

  ⑵小组交流作图的方法。

  ⑶尝试画图。

  教师巡视交流,参与部分小组讨论,辅导有困难的学生。

  3.组织全班交流。

  投影展示学生完成的作品。

  组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

  B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

  C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

  4.算一算。

  台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

  200÷40=5(小时)

  5.总结画图的基本步骤。

  交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

  总结:

  (1)确定平面图中东、西、南、北的方向。

  (2)确定观测点。

  (3)根据所给的度数定出所画物体所在的方向。

  (4)根据比例尺,定出所画物体与观测点之间的图上距离。

  【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

  三、巩固练习

  1.教材第20页“做一做”。

  这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。

  ⑵组织交流。

  让学生说说是怎样测量方向的,怎样计算距离的。

  2.教材第21页“做一做”。

  ⑴学生独立进行画图。

  ⑵投影展示,组织评议。

  ⑶交流画图的方法。

  四、课堂小结

  今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

六年级数学上册教案3

  教学目标:

  1、在现实情境中体会正负数的意义,了解正负数的符号和读法,并会用负数表示一些日常生活中的问题。

  2、借助提供的教学情境,进一步让学生体会正负数的意义,认识正负数的作用。

  3、感受数学在日常生活中的应用,体验学习成功的收获与喜悦。

  教学重难点:

  1、对负数意义的理解。

  2、会用负数表示一些日常生活中的的问题。

  3、知道正负数可以相互抵消。

  课前游戏:

  相反动作游戏

  举起左手 举起右手 举起双手 坐下 向左转 向右转 起立

  教学过程:

  一、创设情境,了解正负数的意义。

  1、正负数的意义

  请看大屏幕,这是什么?可以干什么?这几天我们杭州有点冷,如果往北方走,气温将会……(越来越冷)让我们一起来看看我国最北面几个城市的气温。

  城 市 最低气温(°C) 最高气温(°C)

  哈尔滨 -2 5

  齐齐哈尔 -5 4

  大庆 -3 3

  ⑴ 观察此表,谁能说说哈尔滨的气温状况是怎样的?齐齐哈尔呢?

  (应对:如果用负数读法,引到零上零下。)

  ⑵ 引导负数意义

  方案一:我们再来看最低气温这列中的数,你认识这叫什么数吗?那相对应的这些数又叫做什么数?是啊,正数有时我们有表示成+5、+4、+3。

  方案二:既然“-2”读负二,拿这个(-5)呢?前面的负号叫做?这列数又称为什么?

  ⑶ 引导正数意义:相对应的这列又叫做什么数呢?符号,读法。集体读第三行。

  ⑷ 如果要把大庆的最低温度-3表示在这温度记上,该标在哪里?(应对一:同学们是不是有什么困难,如果杨老师在这里表上0呢,可以标在这里吗?这里呢?。应对二:为什么把-3标在这里,他的上一个该标几?直至得出0)。最高温度3呢?你是怎么想的?我们把齐齐哈尔的两个温度也表示上去,该标在哪里?如果我们再往上表示,则温度?(越高),往下呢?(同时用箭头表示)0在这里是什么?(0是分界点)

  ⑸ 揭示课题。

  ⑹ 刚才我们通过温度了解了正负数,生活中你还在哪里看到过负数?说说个别的意义。课件展示生活实例。(存折、电梯、班级扣分表)引出相反意义

  ⑺ 刚才同学们都表现的相当棒,相信下面几题也难不倒你们。我们采用男女生比赛的形式,可是要计分的哦,计分规则是:答对一方记1分,则对方记?分,(-1),都答不出来记0分,要举手回答。我还要请人帮我计分,谁愿意?现在开始,请听题:

  ① 从学校出发向东走100米用+100米表示,则用-150米表示从学校出发( )?——学校这个地方用什么表示?

  ② 世界上最高的珠穆朗玛峰比海平面高出8848.43米,如果这个高度表示为+8848.43米,那么,比海平面低155米的新疆吐鲁番盆地的高度,应表示为( )米。——海平面的高度是多少米?

  ③ 最早认识和使用负数的国家是( )。

  小知识:请一生读一读。

  中国是历史上最早认识和应用负数的国家,早在20xx多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为正,以支出钱为负;常用红色算筹表示正,黑色算筹表示负。而西方国家认识负数比中国迟了数百年。

  我们的老祖宗多厉害,接下来就看我们的.了!

  二、探索活动,体会正负数在生活中的应用。

  1、请看这张计分表,谁愿意把这个计分情况简略的给大家说一说。

  2、说的很好,请大家想一想男生的最后得分是多少?思考过程?

  (引导:突出正负数可以相互抵消。)

  谁能说一说另一个的最后得分是多少?得分是怎么来的?

  3、语言用的很准确,请同桌说一说.

  4、刚才的比赛哪一方赢了?如果要想赢得对方至少还要赢几次?

  5、谁愿意给大家说一说?

  6、总结:通过这个游戏我们知道了正负数可以相互抵消。我们在生活中有时会用到这个方法。

  三、巩固练习,加深正负数在生活中应用的体会。

  模仿练习:请看大屏幕:

  5袋纯味精净含量质检结果

  第1袋 第2袋 第3袋 第4袋 第5袋

  比净含量多多少/克 -2 +2 -5 +3 0

  1、从味精的包装上你了解到了哪些信息?(净含量:100克)这种味精的净含量是否标准呢?质检人员抽查了其中五袋,我们来看看检查结果;

  2、表格中出现了正负数,-2表示什么意思呢?+2呢?0呢?(引导学生规范的说,强调0这袋)比标准质量轻的在这里都用什么表示?重的呢?

  你对生活中的知识了解真多!

  3、我们知道了正负数表示什么意思,以此为基础,你能求出第一袋味精与第二袋味精的总质量是多少吗?

  你是怎么想的?(此题中的各想法关键突出相互抵消,其余方法以顺其自然为主)

  有没有和他不同的想法?

  4、很好,这里他运用到了相互抵消。那第三袋与第四袋呢?

  5、说的非常好,刚才我们分别求出了第1袋和第2袋、第3袋和第4袋味精的总质量。那你能求出5袋味精的总质量是多少吗?(同时多媒体出示问题)

  关键是引导学生用抵销的多种方法述说想法。

  大家的方法可真不少啊!

  6、总结:通过刚才的学习我们知道了正负数作为两个相反意义的量,在许多时候是可以相互抵消的,但在有时也可以求得两个量之间的间隔。

  变式练习:太空游戏时间表

  1、观看神舟七号升空片段视频。你最激动人心的时刻是?

  2、认真观察这个时间表,从中你了解到那些数学信息?

  (根据学生的回答任意调整准备的三个问题)

  ⑴-3表示什么意思?太空人什么时候穿上太空衣?

  ⑵ 说一说太空人的活动安排?

  ⑶ 两餐之间相隔多长时间?

  ⑷ 可以把“进餐”的时间设为0时吗?“全体集合”该用即时表示?发射火箭呢?第二次进餐呢?

  ⑸ 现在我们再来看两次进餐的间隔时间,怎样?

  机动:综合练习:

  多媒体出示练习题:

  1、六年级进行 “数学基础知识“竞赛。规则答对一题得10分,答错一题得-10分.在第一轮竞赛中,六(1)班答对 8 题,得( )分;答错 3 题,得( )分;最后得分是( )分.

  2、某村 共有5块水稻实验田,每块实验田今年的收成与去年相比情况如下(增产为正,减产为负):

  45千克, —40千克,30千克, —16千克,—5千克

  今年水稻试验田的总产量与去年相比情况如何?

  3、再次利用引入图:大庆的温度是-3 ~ 3 ℃。齐齐哈尔的温差是多少?

  四、课堂总结,整体回忆正负数学习所得。

  总结:通过这节课你有什么收获?

  1、正负数表示意义相反的两个量可以相互抵消.

  2、正负数还可以表示意义相反的量,并且可以求得两个量之间的间隔。(板书:求出间隔)

  师:我们有这么多的收获。在具体的题中你可以灵活运用它们吗?

  五、布置作业,再次引导对正负数的理解和应用。

  我们不光要在题中能灵活运用,对正负数感兴趣的同学,你可以根据我们的在校作息时间表,制一张类似太空游戏时间表的数轴,也可以在学了这节课后,多留意生活中的正负数,并想想他们表示的意义。因为只有对数学知识学以致用,才能掌握的更牢固,理解的更深刻!

六年级数学上册教案4

  教学内容:

  义务教育新课程六年级小学数学第十一册第89——90页例1、及相应的做一做。

  学情分析:

  学生已经认识了周长的含义,并学习了长方形正方形的周长的计算。教学圆的周长可通过化曲为直的方法进行教学。并且知道圆是日常生活中常见的图形,可通过直观演示.实际操作帮助学生解决问题。但圆是曲线图形,是一种新出现的平面几何图形,这在平面图形的周长计算教学上又深了一层。特别是圆周率这个概念也较为抽象,探索圆周率的含义以及推导圆周长计算公式是教学难点,学生不易理解。

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:

  推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:

  理解圆周率的意义。

  教具准备:

  圆片、铁圈、绳子、直尺。

  教学方法:

  观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:兔子和乌龟进行赛跑比赛,(如图)兔子绕着直径为1KM的圆跑一圈,乌龟绕着边长1KM的正方形跑一圈,你认为它们谁跑的路程长?正方形的周长是多少呢?圆的周长又该怎么计算呢?今天我们就一起来学习圆的周长。(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)什么是圆的周长呢?围成圆的曲线的长叫做圆的周长,怎样测量圆的周长呢?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示水杯(指底面),你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“绕线法”和“滚动法”)

  (3)学校外面的操场,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  ㈠圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  ㈡圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)

  小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用绕线法或滚动法的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的`3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

  利用圆的周长计算公式,计算下面各圆的周长

  1.d=4cm2.r=1.5m

  五、应用圆周长计算公式,解决简单的实际问题。

  多媒体出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)指名读题,自己列式解答(1生板演)

  六、巩固新知。

  1、请学生说说怎样计算圆的周长?用字母又怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

  2、尝试练习:

  ①.有一个半径是5米的圆形花坛,在它周围每隔1.57米放一盆花,一共要准备多少盆花?

  ②.已知一棵大树的周长是9.42米,你能算出它的直径吗?

  3、完成判断选择题。

  七、小结:

  这节课你有什么收获?

  八、布置作业:

  练习二十五3、4、5题。

  板书设计

  圆的周长

  围成圆的曲线的长,叫做圆的周长。

  圆的周长和直径的比值,叫做圆周率。π≈3.14

  c=πd或c=2πr

  例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

  c=πd

  =3.14×0.95

  =2.983

  ≈2.98(米)

  答:这张圆桌面的周长是2.98米。

  圆形物

  周长(C)(毫米)

  直径?(d)(毫米)

  周长与直径的比值(保留两位小数)

  圆的周长与直径的关系实验记录单

六年级数学上册教案5

  第一单元 圆

  课题:圆的知识(一) 第 2课时

  课题:圆的周长 第 5课时

  课题:圆周长公式的应用 第 6课时

  课题:圆的面积 第7课时

  2、用数方格的方法求圆面积大小

  课题:练习6~11 第10 课时

  教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

  教学难点:培养学生的空间能力,提高解决实际问题的能力。

  教学目标:

  1.能灵活运用本单元研究得出的知识解答问题。

  2.通过图形的组合,发展学生的空间想象能力。

  3.进一步感受数学的应用价值。

  教学准备:圆规、直尺、小黑板

  教学过程:

  一.复习

  1、什么叫半径?什么叫直径?怎样求圆的周长?怎样求圆的面积?

  二.展开

  1.练习。

  先指名板演,其余同学各自做在草稿纸上,然后全体师生共同讲评,指出存在的错误,尤其是做在草稿纸上的同学一定要自己找出错误的原因和正确的`解答过程,小组进行练习。

  然后派一名代表来汇报自己小组的分析过程和解答算式,最后师生一起小结,在小结要提醒学生其中一些题在解答中要思考的地方:第13题,大圆直径为2×3=6㎝,小圆直径是2㎝,它们的面积比是(62 )2 ÷(22 )2=9÷1,所以直径AB的圆面积是大圆面积的19 。第14题,图中长方形面积是4×6=24(㎝2),根据已知条件可知,大三角形面积为24+6=30(㎝2)(△②的面积比△①的大6㎝2,即大三角形面积比长方形大66㎝2)。因此,(4+a)×6÷2=30 a=30×2÷6-4=6㎝。第16题,甲、乙两块钢板上圆片的面积之和相等,因此剩下的边角料一样重(厚度相等)。

  4.小结。

  三.巩固

  智力游戏

  先让学生各自独立思考,并要求学生说出能拼出哪几号图形,对认为不能拼出的,一定要说明理由。然后,指名汇报,特别要求汇报的同学要讲一讲在拼图中的思考过程。最后师生共同较对。

  第1小题可拼成的图形有①、③、④;

  第2 小题可拼成的图形有①、③;

  第3小题可拼成的图形有③、④。

  四.总结

  五.作业

  教学反思:

  第二单元:分数混合运算

  第1课时 分数混合运算(一)

  教学目标:

  知识目标:

  使学生体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。

  能力目标:培养学生操作、归纳能力。

  情感目标:体会数学与生活的联系。

  教学重点难点:分数混合运算的方法。

  教学过程:

  教学过程:课前谈话:同学们说说自己的兴趣爱好。(学生畅所欲言)

  一、旧知铺垫

  我们的老朋友淘气也有个爱好,那就是做计算题。今天,他想和大家比试比试!

  1、出示计算题

  要求:先说出运算顺序,再计算。

  48÷2÷6 16×(15÷3) 18÷2×10

  13×2×5 72÷(9÷3) 24÷(2×3)

  2、揭示课题

  今天,我们一起研究分数混合运算(板书课题)

  二、合作学习,探究分数混合运算的顺序

  1、出示问题情境

  过渡语:经过课前的谈话,我了解到同学们的兴趣很广泛。相信大家也参加了不少的兴趣小组吧!淘气在课下的时候对同学们参加兴趣小组的情况作了个调查。

  2、你从这幅图中得到了哪些数学信息?

  3、你能提出哪些数学问题?

  4、解决问题:航模小组有多少人?

  ① 请你先估算一下航模小组有多少人?(说明理由)

  ② 请你用图来表示三个量之间的关系。

  (学生尝试画图,教师巡视)

  ③ 学生独立思考和组内交流后,进行全班交流。

  (学生边说教师边板书)

  ④ 尝试计算

  我们用画图的方法,清楚地了解了三个量之间的关系,请你算一算,航模小组到底有多少人?

  (学生独立计算)

  ⑤ 全班交流

  A 12×1/3=4(人 )

  4×3/4=3(人)

  B 12×1/3×3/4=3(人)

  预设一:如果学生出现了A、B两种方法,并且计算方法较多。在交流时对于B种不同算法进行重点交流。

  预设二:如果算法单一,教师可以安排学生小组合作讨论计算方法。

  5、思考:回顾刚才的解题过程,你发现了什么?

  分数混合运算的顺序与整数混合运算的顺序是一样。(教师进行引导总结)

  6、试一试

  有了这惊奇伟大的发现,我们赶快试一试吧!

  ①学生独立完成,如有困难可以求助老师或同组同学。

  5/9×3/5÷6/7 12÷4/5÷3/8

  ②全班交流(说一说运算顺序)

  三、登山游戏中巩固新知

  五一时节,春光明媚,正是游玩的好时候。今天就让我们一起去登上吧!

  以小组为单位进行登山比赛,看哪个组最先登上顶峰摘得红旗()

  在山的不同位置设有不同的计算题,学生答对方可前进。学生可根据自己情况自由选择登山线路。到达山顶后,红旗处设有一题(解决实际问题的)答对者摘得红旗。

  全班交流。

  解决红旗里的问题后,对同学进行环保节水教育。请同学说一说节水的好点子。

  四、总结

  请同学们说一说这节课的收获与体会。

  五、课外作业

  同学们做几张分数、整数卡片,和一些加减乘除符号。同学们之间互相玩卡片做计算。

  教学反思:

六年级数学上册教案6

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量是多少。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。

  (2)用去一部分钱后,还剩下。

  (3)一条路,已修了。

  (4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?

  (2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

  二、新知探究

  (一)教学例2

  1、课件出示自学提纲:

  1)画出线段图,分析题意,寻找解题方法。

  2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

  3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。

  2、学生汇报:

  解法一:80—80× =80—10=70(分贝)

  解法二:80×(1—)=80× =70(分贝)

  3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从

  总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的

  几份之几是多少的方法求出这个部分量。

  4、巩固练习:P20“做一做”

  (二)教学例3

  1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)

  2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。

  3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75× =75+60=135(次)

  解法二:75×(1+)=75× =135(次)

  4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

  三、当堂测评

  练习五第2、3、4、5题。

  1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,

  谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。

  2、小组间解决疑难,全班汇报,教师讲评。

  四、谈收获、找疑难

  这节课你有什么收获?还有什么不懂的吗?

  设计意图:

  例2和例3都是在理解和掌握了求一个数的几分之几是多少的.问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。

  教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

六年级数学上册教案7

  教学目标:

  1、使学生明确本学期的学习任务。

  2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。

  教学过程:

  一、课堂教学常规的说明:

  1、上课的各项要求说明等。

  2、练习的各项要求说明等。

  3、其他说明。

  二、复习旧知:

  (一)填空:

  1、分数单位是1/8的最大真分数是(),最小假分数是(),最小的带分数是()。

  2、1米的3/7是()米,3米的1/7是()米。

  3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了()厘米,时针扫过了()平方厘米。

  (二)解决问题:

  1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?

  2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?

  3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?

  4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?

  5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?

  6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?

  7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?

  8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?

  9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的'环形小路,这条小路的面积是多少平方米?

  10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)

  (三)拓展练习:

  1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?

  2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?

  (2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?

  3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?

  4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?

  5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?

  6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?

六年级数学上册教案8

  教学说明:

  乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。

  一、观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。

  二、讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。

  三、练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。

  四、简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。

  教学内容:乘法分配律P28-29例1、例2

  教学目标:

  1、知道乘法分配律的字母表达式。

  2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。

  3、会用乘法分配律使一些计算简便。

  教学重点:理解掌握乘法分配律。

  教学难点:乘法分配律的得出及其运用。

  教学安排:

  一、观察与思考:

  1、出示例1:(1)看下图计算,有多少个小正方体?

  A、用实物演示引出两种算法。

  (5+3)2=16(个)52+32=16(个)

  B、观察以上两式得到:(5+3)2=52+32

  2、出示生活实例:

  ①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?

  引导学生用两种方法解答,然后通过计算观察得出:

  (30+20)4=200(元)304+204=200(元)

  即:(30+20)4=304+204

  ②2角硬币和5角硬币各6枚,一共有多少钱?

  请学生同桌说说两种计算方法,然后汇报结果。

  (2+5)6=42(角)26+56=42(角)

  即:(2+5)6=26+56

  3、请学生仔细观察上面讨论得到的`三组等式之间有什么相同的特点?

  (前后两式是相等的、先算和再算积与先算积再算和是一样的)

  这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率

  二、讨论与归纳:

  1、出示问题,读读想想。

  A、以上三组算式分别先算什么?再算什么?

  B、它们之间有什么联系?

  先小组讨论,再派代表汇报交流。

  得出乘法分配律的正确说法。

  看书,齐读乘法分配律。

  2、质疑。

  为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?

  (两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)

  3、用字母表示乘法分配律。

  (A+B)C=AC+BC

  三、练习:

  1、根据乘法分配律填上适当的数或运算符号。

  (8+6)3=8○3○6○3

  (25+9)40= 40+ 40

  (56+)3=56 +8

  2、判断:

  13(4+8)=134+8()

  13(4+8)=138+48()

  13(4+8)=134+138()

  四、简便运算:

  1、出示例2:(125+70)8

  请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。

  算好后同桌观察讨论:怎样算比较好?为什么?

  教师总结:用乘法分配律能使一些计算简便。

  2、选择题:

  1624+8424的简便算法是()。

  A、(16+24)84 B、(16+84)24 C、(1684)24

  3、用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)

  (25+9)8 29175+2529 48128-2848 7599+75

  4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)

  41□+5923 □□+6328

  五、 小结:

  1、乘法分配律及字母表达式。

  2、运用乘法分配律应注意什么?

  ①运算符号②分配合理

六年级数学上册教案9

  实践要求:

  1、经历有目的、有设计、有步骤、有合作的实践活动。

  2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。

  3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。

  4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

  教学内容:

  冀教版小学数学六年级上册69——70页。

  教学目标:

  1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。

  2、数学思考:如何对自己设计的理财方案作出合理的解释。

  3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。

  4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。

  教学重点:

  学会理财,会对自己设计的理财方案作出合理的解释。

  教学难点:

  对自己设计的理财方案作出合理的解释。

  教学流程:

  一、导入

  老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的`书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。

  {设计意图:通过和学生谈话,轻松引入本节课的课题}

  二、任务一

  设计方案,解决问题

  聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)

  (1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)

  (2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)

  (3)议一议:你认为那种存钱方案?为什么?

  {设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}

  三、小组汇报、展示

  {在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}

  四、任务二

  聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。

  零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。

  (1)计算聪聪家每个月的结余。

  (2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。

  (3)按照你的存钱计划,算一下,到期能取回多少钱?

  知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。

  其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。

  五、分享收获

  {设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}

  六、课下作业

  为自己的零花钱制定一个零存整取的存钱计划。

  {设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}

  板书设计:

  收入:2160+4180=6340(元)

  支出:2500+800+200+160+30=3690(元)

  结余:6340—3690=2650(元)

六年级数学上册教案10

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的`发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.

六年级数学上册教案11

  教学内容:

  北师大版小学数学六年级上册P61复式折线统计图

  教学目标:

  1、引导学生经历复式折线统计图的产生过程,了解其特点,并能在教师的指导下绘制复式折线统计图。

  2、能根据复式折线统计图对数据进行简单分析,并能做出合理的推测,发展学生的统计意识,提高学生的统计能力。

  重点难点:

  体验复式折线统计图的优点。

  教学过程:

  一、情境印入,复习旧知

  1、问题情境

  根据5天的训练成绩,选拔一位同学去参加学校的跳绳比赛。

张明:201205208213217
王星:206204210209202

  2、学生说理

  为什么要选择张明去参加。

  3、引导转换,复习旧知

  你觉得用什么统计图来表示比较合适?

  4、简单读图,感悟趋势

  呈现张明和王星跳绳成绩统计图,学生读图,简述趋势,得出淘汰王星的.结论。

  二、学习新知,初步感悟

  1、制造冲突,引发思考

  (1)呈现刘辉的成绩的折线统计图,分析其进步趋势。(数据:204 206 208 212 216)

  (2)设问:如果张明和刘辉要一决高下,谁获胜的可能性更大一些?

  呈现两张统计图,让学生交流。

  (3)引发思考

  我们能不能再想个办法,对这两张图做个处理,使得我们能一下子就看出张明比刘辉进步得更快?

  2、唤醒旧知,初步感悟。

  (1)直接过度。

  把两张折线统计图合并在一起。(合并后,两条折线都是白色)

  (2)细节教学,引导学生发现同一种颜色的折线无法区别两人成绩。

  揭题:复式折线统计图(板书)

  (3)感悟优点。

  相比刚才两张统计图,你觉得它有什么优点?(便于比较两组数据的变化趋势)

  三、加深体验

  呈现王芳7~15周岁体重变化情况统计图。

  观察这张图,你了解到了什么?

  在原图上加一条“标准体重”折线

  再让学生评价一下王芳的体重发展情况?

  四、巩固练习

  出示题目:中国和美国在第25~29奥运会获金牌情况统计图(条形统计图)

中国:1616283251
美国:3744393536

  (1)让学生绘制成复式折线统计图。(只描点连线)

  (2)学生独立绘图。

  (3)读图练习,再次体验。

  (4)根据“中国是否可能在第30届奥运会上金牌继续保持第一”。引导学生观察复式折线统计图中反映两国夺金趋势。

  五、练习。

  P63 试一试

六年级数学上册教案12

  本册教学目标:

  这一册教材的教学目标是,使学生:

  1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

  2. 理解倒数的意义,掌握求倒数的方法。

  3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

  4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

  5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

  6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

  7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

  8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

  9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12. 养成认真作业、书写整洁的良好习惯。

  第一单元 位置

  单元教学目标:

  1. 在具体的'情境中,探索确定位置的方法,能用数对表示物体的位置。

  2. 能在方格纸上用数对确定位置。

  教学内容 位置(一) 新授课 新授

  教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2. 使学生能在方格纸上用数对确定位置。

  教学重点 能用数对表示物体的位置。

  教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

  教具准备

  教学过程 一、 导入

  1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、 新授

  1、 教学例1

  (1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

  (2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、 小结例1:

  (1) 确定一个同学的位置,用了几个数据?(2个)

  (2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

  3、 练习:

  (1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  4、 教学例2

  (1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3) 同桌讨论说出其他场馆所在的位置,并指名回答。

  (4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

  三、 练习

  1、 练习一第4题

  (1) 学生独立找出图中的字母所在的位置,指名回答。

  (2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、 练习一第6题

  (1) 独立写出图上各顶点的位置。

  (2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、 总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、 作业

  练习一第1、2、5、7、8题。

六年级数学上册教案13

  教学内容:

  小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

  教学目标:

  1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:掌握按比例分配应用题的解题方法。

  教学难点:按比例分配应用题的实际应用。

  教学准备:自制多媒体课件。实物投影仪。

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

  (5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

  2、口答应用题

  六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

  口答:100÷2=50(平方米)

  提问:这是一道分配问题,分谁?(100平方米)

  怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

  1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

  小组汇报:

  (1)六年级的保洁区面积是二年级的 倍

  (2)二年级的保洁区面积是六年级的

  (3)六年级的保洁区面积占总面积的

  (4)二年级的保洁区面积占总面积的

  ……

  3、课件演示

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的'?(请学生板演)

  方法一、3+2=5 100÷5=20(平方米)

  20×3=60(平方米) 20×2=40(平方米)

  方法二、3+2=5 100× =60(平方米)

  100×=40(平方米)

  ……

  5、这道题做得对不对呢?我们怎么检验?

  ①两个班级的面积相加,是否等于原来的总面积。

  ②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

  ……

  6、练习:

  如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

  学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

  (1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

  (2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

  (3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?

  (4)学生独立解答。

  (5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  8、小结:观察我们今天学习的按比例应用题有什么特点?

  三、开放运用,体验成功

  小明九月份共用去零花钱30元,具体用途及分配情况见下表:

零花钱30



买学习用品



买零食



玩游戏机



1



3



6









  1.你能算出小明的各项支出是多少元吗?

  2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?

  1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。

  四、总结:

  今天的学习你有什么收获呢?

  五、布置作业:练习十三的第1~4题。

六年级数学上册教案14

  教学目标

  1.理解一个数乘以分数的意义,明白分数乘以分数的算理,掌握计算法则。

  2.能正确地进行分数乘以分数的计算。

  3.通过学生全面参与教学过程,培养学生迁移、观察、分析、概括的能力。

  教学重点

  理解意义,掌握法则。

  教学难点

  推导计算法则。

  教学过程

  (一)复习

  2.口算下面各题,并说出算式的意义。

  (二)导入新课

  通过分数乘以整数意义的学习,使我们看到知识之间是有联系的,而且新知识都是在旧知识基础上发展的。今天我们继续研究一个数乘以分数的意义和计算方法。(板书课题)

  (三)讲授新课

  1.教师逐次出示投影片,引导学生认真观察,正确列出算式,说出算式的意义。

  投影:

  的3倍是多少。)(板书)

  投影:

  一半。)

  其中的一份。)

  师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)

  少。)(板书)

  投影:

  先观察图,然后列式,结合图说出算式意义。(小组讨论)

  汇报讨论结果,并板书。

  (3)不出示投影图,你自己还想知道多少瓶的重量呀?

  分别列式,说意义。

  列式?算式的`意义是什么?

  (5)观察概括:观察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)

  论)

  汇报讨论结果,并板书:

  一个数乘以分数的意义就是求这个数的几分之几是多少?

  (6)练习:说说算式意义。

  2.推导法则。

  我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应该怎样计算呢?

  耕地多少公顷?

  (把一公顷平均分成2份,取其中一份,是1小时耕的。)

  拿出发的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)

  ①再贴出一张折叠后的结果。

  这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)

  论,后订正,板书)

  分数有什么关系?(原式两分数的分母相乘。)

  并计算出结果。

  汇报、订正并板书。

  贴出在折纸上表示的结果。

  观察:原式和结果分子、分母有什么关系?概括分数乘以分数的计算法则。(讨论、订正)

  (分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)

  练一练

  投影订正三种做法:

  比较哪种方法对?哪种方法好?注意:先约分再乘。(板书)

  (四)巩固练习

  (做本上或投影片上)

  1.计算例2中算式的结果。

  投影反馈时,强调先约分。

  3.第7页,第1题,看图填空。(做书上)

  4.先说过程,再说结果:

  5.第7页,第4题,列式计算。

  6.判断:

  (五)课堂总结

  这节课我们学了哪些知识?意义是什么?法则是什么?应注意什么?

  课堂教学设计说明

  这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种能力。教案设计重视学生全面参与教学过程,如在教师的指导下,让学生积极主动地探索意义;用动手折叠、画,讨论等形式推导法则。使学生加深理解。教案中注意扶放结合,如例3第一问,是老师帮助学生学习,掌握分析思路,而第二问则是放开让学生依照第一题的解题思路学生自己列式、画图、说意义、推算结果。总结意义和法则的结论时,都是由感性认识到理性认识,使学生自己得出结论。

六年级数学上册教案15

  教学目标:

  使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。

  教学资源:

  小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。

  教学过程:

  一、揭示课题

  今天,我们继续进行整理和练习。

  二、基本练习

  1、根据下面的条件,说说数量间的相等关系。

  (1)师傅每小时加工的零件比徒弟的3倍少18个。

  (2)一堆黄沙运走了30车后还剩下16吨。

  (3)一条围巾的价钱比一副手套价钱的2倍多25元。

  2、在括号里填上含有字母的式子

  (1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有()人;舞蹈队和歌咏队一共有()人,歌咏队比舞蹈队多()人。

  (2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有()人,跳绳的有()人;踢毽的比跳绳的少()人,踢毽的和跳绳的一共有()人。

  三、练习与应用

  1、求x的值

  (1)三角形面积275cm。(2)长方形周长9m。

  第(1)小题先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。

  第(2)小题

  先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的.依据。

  学生列出的方程可能有以下几种情况:

  2x+1.5×2=9(x+1.5)×2=9 x+1.5=9÷2

  问:这几个方程哪些你会解了?请你说说应怎样解?

  (对于有困难的学生,教师要多加关注,注意个别辅导。)

  交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。

  指名3位学生分别板演。再集体交流。

  2、第6题、第7题、第9题、第10题

  让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。

  3、第8题

  猎豹追捕猎物时的速度大约是一名优秀短跑运动员百米赛跑速度的3倍,大约比这名运动员每秒多跑20米。这名运动员每秒大约跑多少米?这只猎豹呢?

  先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?

  再让学生解答问题,然后说说自己有什么感想。

  四、思考题

  盒子里装有同样数量的红球和白球。每次取出6个红球和4个白球,取了若干次以后,红球正好取完,白球还有10个。一共取了几次?盒子里原来有红球多少个?

  学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。

  再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。

  五、总结:

  通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?

【六年级数学上册教案】相关文章:

数学六年级上册教案12-22

数学上册教案12-25

数学上册教案12-25

数学六年级上册辅导教案01-06

六年级上册数学的教案09-28

六年级数学上册教案03-04

数学六年级上册《圆的周长》教案04-07

六年级数学上册《》教案04-07

六年级数学上册教案04-10

六年级上册数学教案01-12