数学教案:《因式分解》

时间:2025-01-06 09:34:55 秀雯 数学教案 我要投稿
  • 相关推荐

数学教案:《因式分解》(通用10篇)

  作为一名无私奉献的老师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?下面是小编帮大家整理的数学教案:《因式分解》,希望能够帮助到大家。

数学教案:《因式分解》(通用10篇)

  数学教案:《因式分解》 1

  教学目标:

  运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

  教学重点和难点

  1.平方差公式;

  2.完全平方公式;

  3.灵活运用3种方法.

  教学过程:

  一、提出问题,得到新知

  观察下列多项式:x24和y225

  学生思考,教师总结:

  (1)它们有两项,且都是两个数的`平方差;

  (2)会联想到平方差公式.

  公式逆向:a2b2=(a+b)(ab)

  如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式

  二、运用公式

  例1:填空

  ①4a2=( )2

  ②b2=( )2

  ③0.16a4=( )2

  ④1.21a2b2=( )2

  ⑤2x4=( )2

  ⑥5x4y2=( )2

  解答:

  ①4a2=(2a)2;

  ②b2=(b)2

  ③0.16a4=(0.4a2)2

  ④1.21a2b2=(1.1ab)2

  ⑤2x4=(x2)2

  ⑥5x4y2=(x2y)2

  例2:下列多项式能否用平方差公式进行因式分解

  ①1.21a2+0.01b2

  ②4a2+625b2

  ③16x549y4④4x236y2

  解答:

  ①1.21a2+0.01b2能用

  ②4a2+625b2不能用

  ③16x549y4不能用

  ④4x236y2不能用

  数学教案:《因式分解》 2

  教学目标

  1.知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式

  2.过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解

  3.情感、态度与价值观

  培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值

  重、难点与关键

  1.重点:掌握用提公因式法把多项式分解因式

  2.难点:正确地确定多项式的公因式

  3.关键:提公因式法关键是如何找公因式

  方法是:一看系数、二看字母.公因式的系数取各项系数的.公约数;字母取各项相同的字母,并且各字母的指数取最低次幂

  教学方法

  采用“启发式”教学方法

  教学过程

  一、回顾交流,导入新知

  复习交流:

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的形式,并说明理由

  教师归纳:我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法

  二、小组合作,探究方法

  教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  师生共识:提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂

  三、范例学习,应用所学

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式,3a2(x-y)3-4b2(y-x)2

  思路点拨:观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2?3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2?3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用简便的方法计算:0.84×12+12×0.6-0.44×12.

  教师活动:引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  教师活动:在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本P167练习第1、2、3题.

  探研时空:

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准公因式,在找公因式时应注意:

  (1)系数要找公约数;

  (2)字母要找各项都有的;

  (3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止

  六、布置作业,专题突破

  课本P170习题15.4第1、4(1)、6题.

  数学教案:《因式分解》 3

  教学目标

  1.知识与技能

  了解因式分解的意义,以及它与整式乘法的关系.

  2.过程与方法

  经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

  3.情感、态度与价值观

  在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的.内在含义与价值.

  重、难点与关键

  1.重点:了解因式分解的意义,感受其作用.

  2.难点:整式乘法与因式分解之间的关系.

  3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

  教学方法

  采用“激趣导学”的教学方法.

  教学过程

  一、创设情境,激趣导入

  问题牵引:

  请同学们探究下面的2个问题:

  问题1:720能被哪些数整除?谈谈你的想法.

  问题2:当a=102,b=98时,求a2-b2的值.

  二、丰富联想,展示思维

  探索:你会做下面的填空吗?

  1.ma+mb+mc=( )( );

  2.x2-4=( )( );

  3.x2-2xy+y2=( )2.

  师生共识:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

  三、小组活动,共同探究

  问题牵引:

  (1)下列各式从左到右的变形是否为因式分解:

  ①(x+1)(x-1)=x2-1;

  ②a2-1+b2=(a+1)(a-1)+b2;

  ③7x-7=7(x-1).

  (2)在下列括号里,填上适当的项,使等式成立.

  ①9x2(______)+y2=(3x+y)(_______);

  ②x2-4xy+(_______)=(x-_______)2.

  四、随堂练习,巩固深化

  课本练习.

  探研时空:计算:993-99能被100整除吗?

  五、课堂总结,发展潜能

  由学生自己进行小结,教师提出如下纲目:

  1.什么叫因式分解?

  2.因式分解与整式运算有何区别?

  六、布置作业,专题突破

  选用补充作业.

  板书设计

  数学教案:《因式分解》 4

  教学目标

  1.知识与技能

  会应用平方差公式进行因式分解,发展学生推理能力.

  2.过程与方法

  经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

  3.情感、态度与价值观

  培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

  重、难点与关键

  1.重点:利用平方差公式分解因式.

  2.难点:领会因式分解的解题步骤和分解因式的'彻底性.

  3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

  教学方法

  采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

  教学过程

  一、观察探讨,体验新知

  问题牵引:

  请同学们计算下列各式.

  (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

  学生活动:动笔计算出上面的两道题,并踊跃上台板演.

  (1)(a+5)(a-5)=a2-52=a2-25;

  (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

  教师活动:引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

  1.分解因式:a2-25;2.分解因式16m2-9n.

  学生活动:从逆向思维入手,很快得到下面答案:

  (1)a2-25=a2-52=(a+5)(a-5).

  (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

  教师活动:引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

  平方差公式:a2-b2=(a+b)(a-b).

  评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

  二、范例学习,应用所学

  例1:把下列各式分解因式:(投影显示或板书)

  (1)x2-9y2;(2)16x4-y4;

  (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

  (5)m2(16x-y)+n2(y-16x).

  思路点拨:在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

  教师活动:启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

  学生活动:分四人小组,合作探究.

  解:(1)x2-9y2=(x+3y)(x-3y);

  (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

  (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

  (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

  (5)m2(16x-y)+n2(y-16x)

  =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)

  数学教案:《因式分解》 5

  一、背景介绍

  因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

  二、教学设计

  【教学内容分析】

  因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

  【教学目标】

  1、认知目标:

  (1)理解因式分解的概念和意义

  (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

  2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

  3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

  【教学重点、难点】

  重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

  【教学准备】

  实物投影仪、多媒体辅助教学。

  【教学过程】

  ㈠、情境导入

  看谁算得快:(抢答)

  (1)若a=101,b=99,则a2-b2=___________;

  (2)若a=99,b=-1,则a2-2ab+b2=____________;

  (3)若x=-3,则20x2+60x=____________。

  【初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】

  ㈡、探究新知

  1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  【“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】

  2、观察:a2-b2=(a+b)(a-b) ,

  a2-2ab+b2 = (a-b)2 ,

  20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

  【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

  3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

  【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】

  板书课题:§6.1因式分解

  因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

  ㈢、前进一步

  1、让学生继续观察:(a+b)(a-b)= a2-b2 ,

  (a-b)2= a2-2ab+b2,

  20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

  (要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的.错误。)

  【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】

  2、因式分解与整式乘法的关系:

  因式分解

  结合:a2-b2=========(a+b)(a-b)

  整式乘法

  说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

  结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)

  ㈣、巩固新知

  1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

  (1)x2-3x+1=x(x-3)+1 ;

  (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn;

  (4)4x2-4x+1=(2x-1)2;

  (5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x;

  (7)k2+ +2=(k+ )2;

  (8)18a3bc=3a2b?6ac。

  【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】

  2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

  【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】

  ㈤、应用解释

  例 检验下列因式分解是否正确:

  (1)x2y-xy2=xy(x-y);

  (2)2x2-1=(2x+1)(2x-1);

  (3)x2+3x+2=(x+1)(x+2).

  分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

  练习 计算下列各题,并说明你的算法:(请学生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思维拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

  2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

  【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】

  ㈦、课堂回顾

  今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

  【课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习、总结、学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】

  ㈧、布置作业

  教科书第153的作业题。

  【设计思想】

  叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。

  数学教案:《因式分解》 6

  一、教学目标

  1.掌握“多──少”、“大──小”两组反义词。

  2.理解量词“群、颗、堆”的意思,能正确使用一些量词。

  3.正确、流利地朗读课文。

  二、教学重难点

  认字、写字和正确使用量词。

  三、教学过程

  (一)复习检查

  1.复习生字。

  2.朗读课文。

  (二)学习课文,整体把握

  1.说一说、比一比。

  师:同学们都读了课文,请告诉老师,他们在比什么?

  生:比大──小。

  生:比多──少。

  师:谁和谁在比大小,谁和谁在比多少?

  生:黄牛和花猫、苹果和枣在比大小。

  生:鸭子和鸟、杏子和桃在比多少。

  师:黄牛和花猫、鸭子和鸟都是动物这是一类的,它们可以放在一起来比较。苹果和枣、杏子和桃都是水果,可以放在一起比较。

  2.认识量词。

  课件出示课文:

  一(头)黄牛一(只)猫

  一(个)苹果一(颗)枣

  一(群)鸭子一(只)鸟

  一(堆)杏子一(个)桃

  师:括号内的字表示量词。在说一些物体时要用上这类的表示数量的词。

  师:在上面的这些图片中(课件出示一些动物图片)你能说一说吗?

  生:一头猪。

  生:一只兔。

  生:一只鸡,一群鸟。

  师:对了,多的'时候用一(群),还能说一群羊、一群蚂蚁、一群大雁……

  师:我们再来看这些可以用什么量词,你能说吗?

  生:一个西瓜,一堆西瓜。

  生:一棵树,一颗星。

  师:这两个字不一样,表示的物体也不一样,“棵”一般用在植物类,“颗”一般用在圆圆的、小小的、粒状的东西。

  生:一棵白菜,一颗石头。

  生:一颗心,一颗种子。

  3.我会说。

  (1)用自己喜欢的方式读课文。

  (2)练习课后“我会说”。

  一(朵)花一(把)扇子一(本)书一(件)衣服一(双)鞋一(块)西瓜一(辆)车

  (3)续编儿歌。

  学生先说一说生活中的量词,思考后续编儿歌。

  例:

  一个大,一个小,一头大象一只兔。

  一个皮球一颗扣。

  一边多,一边少,一群山羊一只鸡。

  一堆萝卜一根葱。

  (三)指导生字,书写生字

  1.课件出示生字,学生观察生字。

  课件展示书写过程,书写顺序上有什么相同的地方?重点看笔顺:先中间后两边。

  引导学习新笔画“竖钩”,注意“少”上边的“小”没钩。

  2.教师指导、示范,学生书空。

  3.学生描红。

  4.展示学生作业。

  数学教案:《因式分解》 7

  教学目标:

  理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

  考查重难点与常见题型:

  考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

  教学过程:

  因式分解知识点

  多项式的因式分解,就是把一个多项式化为几个整式的'积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

  (1)提公因式法

  如多项式

  其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

  (2)运用公式法,即用

  写出结果。

  (3)十字相乘法

  对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

  (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

  分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

  (5)求根公式法:如果有两个根X1,X2,那么

  2、教学实例:学案示例

  3、课堂练习:学案作业

  4、课堂:

  5、板书:

  6、课堂作业:学案作业

  7、教学反思:

  数学教案:《因式分解》 8

  教学目标

  ①在掌握了解因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.

  ②在运用公式法进行因式分解的同时培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.

  ③进一步体验“整体”的思想,培养“换元”的意识.

  教学重点与难点

  重点:运用完全平方公式法进行因式分解.

  难点:观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.

  教学准备

  要求学生对完全平方公式准确理解.

  教学设计

  问题:你能将多项式a2+2ab+b2和a2-2ab+b2因式分解吗?这两个多项式有什么特点?

  建议:由于受到前面用平方差公式分解因式的'影响,学生对于这两个多项式因式分解比较容易想到用完全平方公式,学生容易接受,教师要把重点放在研究公式的特征上来.

  注:可采用让学生自主讨论的方式进行教学,引导学生从多项式的项数、每项的特点、整个多项式的特点等几个方面进行研究.然后交流各自的体会.

  把多项式向公式的方向变形和转化.

  例5分解因式

  (1)16x2+24x+9 (2)-x2+4x-42

  注:训练学生运用完全平方公式分解因式,要尽可能地让学生说和做,引导学生把多项式与公式进行比较找出不同点,把多项式向公式的方向转化.

  例6分解因式

  (1)3ax2+6ax+3a2

  (2)(a+b)2-12(a+b)+36

  注:学生仔细观察多项式的特点,教师适当提醒和指导,要从公式的形式和特点上进行比较.(可把a+b看作一个整体,设a+b=)

  第2小题注意渗透换整体和换元的思想.

  巩固练习

  教科书第170页的练习题.

  小结提高

  1.举一个例子说说应用完全平方公式分解因式的多项式应具有怎样的特征.

  2.谈谈多项式因式分解的思考方向和分解的步骤.

  3.谈谈多项式因式分解的注意点.

  注:对这些问题进行回顾和小结能从大的方面把握因式分解的方向和培养观察能力.

  布置作业

  1.必做题:教科书第171页习题15.4第4题,第5题;

  2.选做题:教科书第171页第10题;

  数学教案:《因式分解》 9

  教学目标:

  1、学生能够理解因式分解的概念。

  2、学生能够应用因式分解解决实际问题。

  3、学生能够简化代数式并解决相关的数学题目。

  教学准备:

  1、白板、黑板或投影仪来展示教学内容。

  2、学生练习册或作业本。

  教学步骤:

  步骤1:引入因式分解概念(10分钟)

  学生会发现数学中的代数式经常出现多个项的乘积,比如(a+b)、(a-b)等。引入因式分解的概念,解释代数式可以进行因式分解,从而更好地理解和简化代数式。

  步骤2:理解因式分解的重要性(15分钟)

  在这一部分,老师可以通过大量的实例,如多项式的乘积、简化分数等,来帮助学生理解因式分解在求解问题和简化计算中的重要性。

  步骤3:展示因式分解的步骤(10分钟)

  解释因式分解的步骤,例如将代数式进行拆分,找到公因子,应用分配律,最终将代数式简化为乘积的形式。通过在黑板上解决一些示例问题,让学生理解具体的步骤。

  步骤4:实际应用案例(20分钟)

  给学生一些实际的应用案例,如利用因式分解解决面积和周长的'问题,解决一元二次方程的根等。让学生通过解题来巩固他们对因式分解的理解并应用所学知识。

  步骤5:团队合作活动(15分钟)

  将学生分成小组,给每个小组一个因式分解的问题。要求学生协作解决问题,并在规定时间内完成,然后展示他们的解决方案。通过这种互动活动,学生可以互相学习并巩固因式分解的知识。

  步骤6:总结和扩展(10分钟)

  总结因式分解的概念和步骤,并鼓励学生在课后进一步探索因式分解的应用,如解决更复杂的代数问题,求解方程等。鼓励学生发现数学中的因式分解的重要性,并将其扩展到更广泛的数学领域。

  扩展活动:

  1、请学生自行搜索因式分解的应用实例,并在下节课上进行分享。

  2、提供更复杂的代数式让学生进行因式分解,并进行讨论和解释。

  3、给学生类似于迷思或解谜的数学问题,让他们运用因式分解的技巧解决问题。

  教学评估方式:

  1、在课堂上观察学生对因式分解概念的理解程度。

  2、让学生解决一些基本的因式分解题目,并批改他们的答案。

  3、观察学生在团队合作活动中的表现和解决问题的能力。

  结语:

  通过这份因式分解英语教案,学生能够在实际例子和互动活动中更好地理解因式分解的概念和步骤,并学会应用因式分解解决数学问题。这样的教学方法将帮助学生培养数学思维能力和解决问题的技巧。通过互动和扩展活动,学生还能够深入探索因式分解在数学中的更多应用,进一步拓宽他们的知识面。

  数学教案:《因式分解》 10

  一、教材分析

  1、关于地位与作用。

  今天我说课的内容是浙教版七年级数学下册第六章《因式分解》第四节课的内容。因式分解是代数式的一种重要恒等变形,它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。就本节课而言,着重阐述了三个方面,一是因式分解在简单的多项式除法的应用;二是利用因式分解求解简单的一元二次方程;三是因式分解在数学应用问题中的综合运用。通过本节课的学习,不仅使学生巩固因式分解的概念和原理,而且又为后面代数的学习作好了充分的准备。

  2、关于教学目标。

  根据这一节课的内容,对于因式分解的应用在整个代数教学中的地位和作用,我制定了以下教学目标:

  (一)知识目标:

  ①会用平方差公式和完全平方公式分解因式;

  ②会用因式分解进行简单的多项式除法及求解简单的一元二次方程。

  (二)能力目标:

  ①初步会综合运用因式分解知识解决一些简单的数学应用问题;

  ②培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力。

  ③ 培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法。

  (三) 情感目标:

  培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。并且让学生明确数学学习的重要性,让学生在利用数学知识解决生活实际问题中体验快乐。

  3、关于教学重点与难点。

  本节课利用因式分解知识解决问题是学习的关键,因此我将本课的学习重点、难点确定为:

  学习的重点:

  ①会用平方差公式和完全平方公式分解因式;

  ②会用因式分解进行简单的多项式除法及求解简单的一元二次方程。

  学习的难点:

  ①因式分解过程中出现的符号问题,整体思想和换元思想的应用。

  ②综合运用因式分解知识解决数学应用问题。

  4、关于教法与学法。

  学情分析:

  ①七年级学生对于代数式的运算较之有理数运算有较大的困难,由于因式分解是乘法运算的逆运算,有部分学生对于此概念容易混淆

  ②对于平方差公式和完全平方公式,有部分学生容易在应用时混淆。

  ③对于一元二次方程求解问题,学生是初次接触,对于方程的根的情况较难理解。

  ④因式分解的综合应用上学生困难较大。

  教法与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”。就本节课而言,根据学生在学习中可能出现的困难,本节课在教学中主要采用“尝试教学法”,以学生为主体,以亲身体验为主线,教师在课堂中主要起到点拨和组织作用。利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。

  注:不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的。

  教学思想:整体思想和换元思想的体现。

  二、教学过程:

  本节课,一共设以下几个环节

  第一环节,设置问题,复习回顾:

  兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。初一学生在学习过程中,能积极地、主动地去探讨问题,这是学习成功地一个保障。

  小小考场: 利用多媒体课件,依次出示

  (1)a2+a (2)a2–4; (3)a2+2a+1

  说明:① 巩固因式分解的两种基本解法;

  ②复习巩固两个基本公式。

  第二环节, 尝试练一练:(预设题)

  ① a2÷(-a ) ② (a2+a)÷a

  ③ (xy2—2xy)÷(y—2) ④ (9a2—4)÷(2—3a)

  说明:1、本题前两小题可请学生口答,后两题请两位同学上黑板板演其他同学自己先做,然后纠正黑板上的错误。

  2、通过预设题,层层递进,为例题的理解作了个铺垫,降低了本节课的难点,可以让学生自己理解书本例1。

  3、请同学及时归纳用因式分解解决代数式的除法的方法和步骤:

  ①对每一个能因式分解的多项式进行因式分解;

  ②约去相同的部分;

  ③注意符号问题,整体思想的'应用 。

  4、安排这一过程的意图是:通过尝试教学,引导学生主动探求,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对因式分解概念的理解,从而突出本节课的重点。

  第三环节,开动小火车(填空)

  1、(a2—4)÷(a+2)= 2、(x2+2xy+y2)÷(x+y)=

  3、 (ab2+a2b)÷(a+b)= 4、(x2—49)÷(7—x)=

  说明:本题先给学生3~5钟思考,采用开动小火车形式既训练了学生的解题速度又是对例1的及时巩固。

  第四环节,合作探索,共同发现:

  以四人一组分小组讨论书本的合作学习内容,并请几个小组代表发表见解,对于学生的发言应尽量鼓励。

  分析:由AB=0可知A=0或B=0,利用此结论解方程(2x+3)(2x—3)=0可得2x+3=0或2x—3=0。

  第五环节,例题精析:

  例、(2x-1)2=(x+2)2

  分析:本例的教学是本节课的一个难点,首先,给学生一定的时间思考讨论,教师适当引导学生思对于本题的求解教师可板书过程,并强调利用因式分解求解简单的一元二次方程的步骤和注意点:

  ①求解原理是:由AB=0可知A=0或B=0。

  ②先移项,注意移项后要变号,等号右边为0。

  ③利用整体思想和换元思想因式分解。

  ④注意方程根的表示方法。

  第六环节,比一比,赛一赛 ,看谁最棒:

  1、(4mn3-6m3n)÷(2n2+3m2) 2、[(2a-1)2-(3a-1)2]÷(5a-2)

  3、49x2-25=0 4、(3x-2)2=(1-5x)2

  突破重点,巩固提高.

  第七环节,探索提高,提升自我:

  1、 已知:| x + y + 1| +| xy - 3 | = 0 求代数式xy3 + x3y 的值。

  2、把偶数按从小到大的顺序排列,相邻的两个偶数的平方差(较大的减去较小的)一定是4的倍数吗?是否可能有比4大的偶数因数?

  说明:教师安排这一过程意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维能力和表达、交流能力。

  第八环节, 知识整理,归纳小结。

  这一部分可由学生自行小结,尽可能说明本节课的收获,教师可适当补充。教师安排这一过程意图是:由学生自行小结,点燃学生主题意识的再度爆发。同时,学生的知识学习得到了自我评价和巩固,成为本节课的最后一个亮点。

  第九环节,作业布置:

  1、书本作业题,作业本。

  2、兴趣题:手工课上,老师又给同学们发了3张正方形纸片,3张长方形纸片,请你将它们拼成一个长方形,并运用面积之间的关系,将多项式2a2+3ab+b2 因式分解

  教师意图:让学生巩固所学内容并进行自我检测与评价,考虑到学生基础的差异性,作业进行分层次要求。兴趣题可满足学有余力的学生的求知欲望,提高他们对因式分解的技能和技巧。

【数学教案:《因式分解》】相关文章:

因式分解数学教案参考08-11

因式分解教案14.3.1因式分解教案03-31

因式分解教案03-08

《因式分解》说课稿10-03

因式分解公式06-04

《因式分解》教学设计04-19

因式分解教学反思09-12

数学因式分解教案08-31

《因式分解》说课稿范文10-07