- 相关推荐
《分数除法》数学教案(精选18篇)
作为一名教师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是小编为大家收集的《分数除法》数学教案,希望对大家有所帮助。
《分数除法》数学教案 1
教学目标
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的'计算方法,提高学生四则计算的能力。
教学重难点
运算顺序,简便运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习引新
二、教学新课
三、作业
1、说说下面各题的运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
《分数除法》数学教案 2
一、教学内容
苏教版小学数学第十一册第33—38页“分数除法”例1—例4。
二、简要分析
本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。
三、教学过程
(一)复习旧知,作好铺垫,导入新课。
1、说出下列各数的倒数(出示卡片)
2、6、—、—、0.5、 1—、 0.7
2、用投影打出:下面两题简便计算的根据是什么?
12÷25=(12×4)÷(25×4)=48÷100=0.48
11÷125=(11×8)÷(125×8)=88÷1000=0.088
[简析:商不变规律的应用,为后面学习新知作出充分准备。]
3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?
A组:78÷10.35÷1136÷721.8÷9
B组:—÷1—÷1—÷218÷——÷1—÷——÷—4—÷2——÷0.7
[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]
师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。
(二)指导探索,在新旧知识的衔接上教师加以点拔导学。
(1)请大家列出B组算式中除数不是1的算式。
—÷218÷——÷——÷—4—÷2— —÷0.7
(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?
[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的`最佳时机。]
师:下面分学习小组进行讨论。
(3)交流。
学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。
学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。
[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]
(教师根据学生的回答,作好下列板书)
—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)
=—×—÷1=18×—÷1
=—×— =18×—
(三)引导学生观察、比较、类推,得出结论。
师问:这里我们是应用的什么进行变化的?(商不变的规律)
(教者把上面板书用虚线框起)让学生观察比较。
—÷2=—×—18÷—=18×—
问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)
生汇报:除号变成了乘号,除数变成了它的倒数。
分数除法算式变成了分数乘法算式。
师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。
练习:用复合投影片打出:
将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)
—÷— —÷— —÷612÷—
=—×—=—×4 =—×—=12×—
[评析:抓住时机,练重点难点,强化新知。]
6、讨论、比较、类推,概括方法。
问:在刚才的练习中,你认为有什么规律?
(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)
师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?
生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)
引导学生讨论:为什么乙数要加上零除外?
(四)利用法则,练习重点,巩固新知。
1、—÷3=—×———=12÷—=12×———=—÷—=—×———=—÷—=———()———
2、计算。(并指名板书,注意书写格式)
—÷3—÷——÷36÷—
3÷——÷——÷— —÷—
3、改错。
(1)9÷—=9÷—=—=10—
(2)—÷5=—×—=—
(3)—÷—=—×—=—
4、判断。
(1)1÷—=—÷1
(2)a÷b=a×—
[评析:改错题、判断题的设计,进一步强化了计算法则。]
(五)作业练习,熟记法则。
1、练习八第3题的前4题
第6题的前4题
2、校对答案。(说出过程,强化法则的应用)
思考题:计算
(1)4—÷2—
(2)—÷0.7
[评析:这里是知识结构的完整,知识点的引伸。]
(六)总结。
1、今天我们一起研究了什么内容?
2、你有哪些收获?
3、计算过程中应注意什么问题?
四、教后评析
本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。
1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。
2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。
3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。
《分数除法》数学教案 3
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的`水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
《分数除法》数学教案 4
教学内容
教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题
三维目标
知识与技能
.经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯
过程与方法
进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯
情感、态度与价值观
进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算
教学重点两、三位数乘一位数和两位数除以一位数
教学难点两、三位数乘一位数和两位数除以一位数
教具准备小黑板
教学过程
一、回忆梳理本学期学习的内容
(1)出示教科书第126页主题图,学生看图,说说他们在做什么。
(2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?
(3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的`基础上,将小组的共同意见写在卡片上。
教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。
(4)小组汇报
出示小组汇报要求:
①请全体同学认真倾听每一位小组代表的发言。
②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。
③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。
二、复习乘法与除法
1.复习口算
先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。
80÷8=×5=4×25=65÷8=
指名汇报,并分别说说是怎样算的。
2.复习笔算
(1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?
(2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的学生及时进行指导。
(3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=
3.复习估算
(1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?
(2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。
全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。
三、复习分数的初步认识
1.认识分数
(1)学生先独立完成教科书第127页分数的初步认识第1题。
(2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调平均分。
2.简单的同分母加减法
(1)独立完成教科书第127页分数的初步认识第2题。
(2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。
四、全课
今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?
五、练习:完成练习二十三第1,2,3,4题
《分数除法》数学教案 5
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、复习
1、根据条件说出把哪个数量看作单位1。
(1)棉田的面积占全村耕地面积的2/5。
(2)小军的体重是爸爸体重的3/8。
(3)故事书的本数占图书总数的1/3。
(4)汽车速度相当于飞机速度的1/5。
2、找单位1,并说出数量关系式。
(1)白兔的只数占总只数的2/5。
(2)甲数正好是乙数的3/8。
(3)男生人数的1/3恰好和女生同样多。
3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?
集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)
二、新授
1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?
(1)指名读题,说出已知条件和问题。
(2)共同画图表示题中的条件和问题。
(3)分析数量关系式
提问:根据水份占体重的4/5,可以得到什么数量关系式?
学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。
根据学生的回答,把线段图进一步完善。
提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)
让学生试列方程,并说出方程表示的意义。
让学生把方程解完,并写上答案。
出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)
2、比较。
提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?
根据学生的回答,帮助学生整理出:
(1)看作单位1的数量相同,数量关系式相同。
(2)复习题单位1的.量已知,用乘法计算;
例1单位1的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。
三、巩固练习
1、做书P34做一做
要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。
2、做练习九第1题。
先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。
四、小测:(略)
五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?
六、布置作业
练习九第2题
教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。
再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
《分数除法》数学教案 6
教学目标
使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。
教学重难点
能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习引新
二、教学新课
三、课堂
四、作业
1、说说下面各题的运算顺序
8÷2+9÷318÷(12-3)
2、将上题中的数据改为分数,问运算顺序怎样?
3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?
1、出示例1
让学生自己独立完成,一人上黑板,集体说解题顺序。
2、组织练习
做“练一练”第1题
3、教学例2
出示例2
问:先算什么,再算什么?
学生口答、老师边板书边提问。
指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的.特点,能用简便算法的一般用简便算法。
4、组织练习
做“练一练”第2题
问:应用了什么定律,要怎样计算?
指出:在除法转化成乘法后,要注意有一些题可以用乘法的运算定律使计算简便。
这节课学习了分数除法和加、减法的混合运算。谁来说一说它的运算顺序怎样?运算时要注意什么?
练习十一第1~3题的第一行,第4、5题
课后感受
本节课的重点放在简便运算上,基本上同学们还是掌握的不错。
《分数除法》数学教案 7
教学目标
1、使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2、培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1、铅笔的支数是钢笔的 倍.
2、杨树的棵数是柳树的 .
3、白兔只数的 是黑兔.
4、红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1、找出题目中的已知条件和未知条件.
2、分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1、找出已知条件和问题
2、抓住哪句话来分析?
3、引导学生用线段图来表示题目中的数量关系.
4、比较复习题与例1的相同点与不同点.
5、教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6、教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1、找出已知条件和问题
2、画图并分析数量关系
3、列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1、教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2、引导学生说出线段图应怎样画?上衣价格的
3、分析:上衣价格的 就是谁的.价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4、让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5、怎样直接用算术方法求出上衣的单价?
(元)
6、比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1、课件演示:
2、列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
《分数除法》数学教案 8
教学目标:
使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力.
教学重点:
分数的数感培养,以及与除法的联系.
教学难点:
抽象思维的培养.
教学过程:
一、铺垫复习,导入新知 [课件1]
1、提问:
A.7/8是什么数 它表示什么
B.7÷8是什么运算 它又表示什么
C.你发现7/8和7÷8之间有联系吗
2、揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二、探索新知,发展智能
1、教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:
A.试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就是1/3米.
B.这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C.从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来表示 也就是说整数除法的商也可以用谁来表示
2、教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块
(1)分析:
A.想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B.同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:
A.请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的. ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B.比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3、小结提问:
A.观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B.你能举几个用分数表示整数除法的商的例子吗
C.能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D.b为什么不能等于0
4、看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三、巩固练习 [课件5]
1、用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2、口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3、7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四、全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五、家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
《分数除法》数学教案 9
教学目标
1、使学生理解两个整数相除的商可以用分数来表示、
2、明确分数与除法的关系,加深学生对分数意义的理解、
教学重点
理解、归纳分数与除法的关系、
教学难点
用除法的意义理解分数的意义、
教学步骤
一、铺垫孕伏、
1、读题说得数、
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2、口述表示的意义、
3、列式计算、
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知、
1、新课导入、
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了、(板书、分数与除法)
2、教学例2、
(1)从分数的.意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米、(板书米)
(2)学生完整叙述自己想的过程、
(3)反馈练习、
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3、教学例3、
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流、
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块、
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块、(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义、
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是、
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份、
(6)反馈练习:说说下面分数的两种意义
4、归纳分数与除法的关系、
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子、也就是说分数既表示分数的意义,又表示整数除法的商、
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数、
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习、
三、全课小结、
通过今天的学习,你明白了什么?
四、随堂练习、
1、填空、
分数可以用来表示除法算式的()、其中分数的分子相当于(),分母相当于()、
2、用分数表示下列各式的商、
4÷511÷1327÷35
9÷913÷1633÷29
3、列式计算、
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业、
用分数表示下面各式的商、
3÷47÷1216÷4925÷249÷9
《分数除法》数学教案 10
教学目标
1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.
2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.
教学重点
理解分数乘、除法应用题的异同点,会正确解答.
教学难点
能正确解答分数乘、除法应用题.
教学过程
一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1、花手绢的块数是白手绢的
2、白手绢块数的 正好是花手绢的块数.
3、花手绢的块数相当于白手绢的
4、白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1、求一个数是另一个数的的几分之几用什么方法?
2、求一个数的几分之几是多少用什么方法?
3、已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.
二、讲授新课
(一)教学例3
1、课件演示:分数除法应用题
2、比较.
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析.
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同.
3、小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几.
(2)求一个数的几分之几是多少.
(3)已知一个数的几分之几是多少求这个数.
4、解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急.
三、巩固练习
(一)应用题
1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.
2、学校有故事书36本,是科技书的 ,科技书有多少本?
3、学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答.
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1、修一条长240千米的公路,修了 ,修了多少千米?
2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1、六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?
2、六一班有学生45人,女生占 .女生有多少人?
3、六一班有男生25人,占全班的' .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2、池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3、池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
《分数除法》数学教案 11
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1、以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的.计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2、分数除以整数的计算法则是什么?(学生总结)
五、作业布置
《分数除法》数学教案 12
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的`意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
《分数除法》数学教案 13
教学目标:
能力目标:培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的.欢乐。
教学重点:
解决实际问题。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:
小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
《分数除法》数学教案 14
教学内容:
49~50页的内容及练习十二1~12题。
教学目标:
1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1.教学例1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的'分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
《分数除法》数学教案 15
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学重难点
教学重点:弄清单位“1”的量,会分析题中的数量关系。
教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×4/5=体内水分的重量。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,小明体内有28千克水分,他的体重是爸爸体重的7/15,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/5=体内水分的重量,
反过来,体内水分的重量÷4/5=小明的体重)。
2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式:爸爸的体重×7/15=小明的体重
小明的体重÷7/15=爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/15χ=35
χ=35÷7/15
χ=75
②算术解:35÷7/15=75(千克)
课件演示计算的'算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ,并列出方程.
4、巩固练习:P38“做一做”课件出示:
学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
《分数除法》数学教案 16
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的.就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
《分数除法》数学教案 17
教材分析:
《分数与除法》是北师大版小学数学五年级上册第三单元《分数》第五课时的教学内容。
在学生第一学段初步认识分数、体验分数产生、理解分数的意义、读写一些简单分数的基础上,在本册教材的第三单元前四课时,学生结合具体情境,再次认识分数,大大丰富了学生的感性认识。本节教学内容重视引导学生在观察比较中发现分数与除法的关系,在此基础上探索假分数与带分数的互化方法。教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。它是学生进一步学习分数基本性质的基础。
设计理念:
1、重视知识的获取过程,树立新的教学观。
数学课程标准指出:把只关注知识结果转向要重视知识结果,更要关注获取知识的过程,以被动听讲和练习为主的方式,是难以引起学生思考的。这节课,我不想把知识、结果直接告诉给学生,而是为学生探索发现新知创造机会,给他们提供一些感兴趣的、有思考价值的数学材料,让学生通过观察、分析、比较、小组讨论等活动来获取知识。
2、重组教材,树立新的教材观。
新课程主张用教材教,而不是教教材。教师要由对教材的挖掘者、执行者走向课程开发的研究者、设计者。本节课,我对教材进行分析后,把原来教材2课时放在一个课时教学,体现了大容量的课堂。
教学目标:
1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。
教学重点:
1、掌握分数与除法的关系,会用分数表示除法的商。
2、运用分数与除法的关系,正确进行假分数与带分数的互化。
教学教法:
为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的'过程。
教学过程:
一、情境导入,引出新知。
课件播放分饼情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出除法与分数这两个教学内容的主角。
二、探究发现,归纳认知。
1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习
(1)、把a块饼平均分成8份,每份是多少块?
(2)、把a块饼平均分成b份,每份是多少块?
学生先写出除法算式,再用分数表示结果,教师板书
12=1/2块
94=9/4块
a8=a/8块
ab=a/b块
通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。
2、归纳认知,明确关系。
(1)、学生观察思考:分数和除法有怎样的关系?
(2)、汇报发现。
板书:被除数 除数=
(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?
学生讨论得出:分母不能为0。
板书:(除数不为0)。
3、尝试用字母表示。
4、及时练习。
23= 87= 165= 1012=
5/6= ()() 13/15=()( )
12/7= ()() 100/6= ()( )
(二)假分数与带分数的互化。
怎样把7/3化成带分数呢?怎样把 2 化成假分数?
1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。
2、检测合作学习效果。
3、师做针对性点评。
4、及时练习。
课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。
四、全课小结,学生谈收获。
学生总结出本课的知识点,对本节课的学习形成一个完整的认识。
板书设计:
板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。
《分数除法》数学教案 18
教学内容
北师大版小学数学五年级下册第五单元分数除法(二)第一课时
教学目标
1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。
2.掌握一般分数除法的计算方法,并能正确计算。
教学重点
一个数除以分数的计算方法。
教学难点
分数除法的基本算理。
教学方法
自主、合作、探究
课前准备
平板电脑、自学单、课件
教学过程
一、课前复习、引入新课
1.由值日班长主持复习上节课(分数除法一)内容。
(1)提问。
(2)1分钟口算练习。
【设计意图:让孩子主持完成课前复习是为了把课堂的主动权从开始就交给孩子们,体现生本教育理念。这样做,不但能激发孩子的学习数学的兴趣,还能提高孩子们听课的效率,锻炼表达能力和思维能力。】
2.教师借势引入新课,板书课题--分数除法(二)。
二、目标导学
师:下面一起来看本节课的学习目标。(平板阅读)
1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。
2.掌握一般分数除法的计算方法,并能正确计算。
师:以上两个目标还得靠同学们的自学,小组内团结协作完成。有信心吗?
【设计意图:学孩子们明确本节课的学习任务及目标,有目的的去学习】
三、导学质疑
1.分一分、说一说、算一算。
师:课前,老师准备了这样一道题目:有4张同样大小的饼,如果1张1份,能分得几份?2张1份能分得几份?1/2张1份呢?1/3张1份呢?
【设计意图:为任务一、任务二做铺垫,让学生顺势、快速完成任务一。】
根据学生回答情况平板出示任务一:
根据自学单上第一题中四个问题列出算式,不计算。
【设计意图:任务一是根据教师的提问让孩子们顺势完成四道题目列式,注重学生审题,理解能力,解决问题策略的培养。】
出示任务二:
1.圈一圈,画一画,写出每道算式结果,并用平板拍照上传。
2.想一想、说一说,你发现了什么?
3.对任务二进行质疑提问。
孩子们完成拍照上传后,教师随意抽取2-3幅作品进行点评,点评中以孩子讲解为主。讲解中重点质疑计算结果是怎么得出来的:
师(或生):4÷1/2=8,4÷1/3=12,你是怎样算出来的?(孩子们的回答可能有:除以一个不为零的数等于乘这个数的倒数;根据画图结果得出来的等)
师引导借助作品中的图片:如果每1/2张1份,每张饼可以平均分成几份?(孩子们在操作的基础上会很快说出2份,4张饼共可分为8份,这样也会得到4÷1/2=8)
教师板书:4÷1/2==4×2=8份
4÷1/3=12是怎样得到呢?
由4÷1/2==4×2=8份很快会说出4÷1/3=4×3=12份。
师点拨:有同学说:“除以一个不为零的数等于乘这个数的倒数”这句话你们认为有道理吗?结合刚才的画图过程,说一说。
根据孩子们的表述,教师强调,从图中可以看出,把4张饼张1份,共可以分成8份,也就是4个2是多少,就是4×2=8,所以4÷1/2=与4×2是相等的,所以:“除以一个不为零的数等于乘这个数的倒数”表述是正确的。(教师:板书,除以一个不为零的数等于乘这个数的倒数)
为什么要除以“一个不为零的数”呢?(强调除数不能为零)
【设计意图:任务二的重点“除以一个不为零的数等于乘这个数的倒数”这句话,总结出分数除法的一般计算方法,理解分数除法的算理。探究中,借助图形的`操作让孩子们掌握并理解分数除法的算理,知道4÷1/2==4×2的原因。任务中,让孩子们先通过自学找出答案,在教师的引导中思考结果是怎样得到的?从而达到对算理的质疑,让学生借助图形理解并掌握“除以一个不为零的数等于乘这个数的倒数”的真正含义。另外,对于完成任务早的同学,给他们时间在小组内进行交流,让他们有事可做。】
出示任务三:
填写自学单表格,根据长方形面积模块,理解“除以一个不为零的数等于乘以这个数的倒数”。用平板拍照上传。
待孩子们完成表格后,将上传的作品抽样点评并质疑提问:
师:从表格中你发现了什么?(可能回答有:宽不变,面积在变,“除以一个不为零的数等于乘这个数的倒数”等,对“除以一个不为零的数等于乘这个数的倒数”这句话进行重点的强调。)
通过一体机放大功能演示,借助长方形面积模块进一步理解分数除法的计算方法和算理。
【设计意图:任务三的重点是借助长方形的面积模块进一步理解分数除法的算理和计算方法,在质疑讲解中利用一体机图形的扩大功能,将长方形变化图进行展示讲解,让孩子们从图中理解“除以一个不为零的数等于乘这个数的倒数”这句话。】
任务四:
小组长负责,安排三位同学在一体机上完成,其他同学在作业本上完成。完成后小组内说一说进行分数除法计算时要注意些什么?点名的同学拍照上传。
让孩子们在一体机上完成任务,并要求点名的同学拍照上传,解答疑难,全班共享。
【设计意图:通过任务四的学习,让孩子们理解分数除法计算方法的基础上,反思学习过程注意的问题,保证计算的正确性、准确性。任务四以一体机演示和交流反思的形式进行,先在小组内交流展示计算方法,然后全班反思、交流注意的题。】
三、巩固训练
判断正误(在平板上手写完成并上传)
1.除以一个数等于乘以这个数的倒数。()
2.()
3.一个数除以,就是这个数扩大了10倍。()
在点评中,由孩子们说出对错的理由,进一步理解“除以一个不为零的数等于乘这个数的倒数”。
四、小结评价
1.孩子们畅谈本节的收获。
2.教师对小组学习情况进行评价。
板书:
除以一个不为零的数等于乘这个数的倒数
4÷1/2=4×2=8(份)
4÷1/3=4×3=12份
【《分数除法》数学教案】相关文章:
《分数除法》数学教案03-07
《分数除法》数学教案01-02
《分数除法》数学教案优秀02-16
分数除法数学教案参考06-01
《分数与除法的关系》数学教案(精选7篇)07-15
分数除法应用题的数学教案05-13
《分数与除法》说课稿02-21
《分数除法》说课稿05-16
分数与除法教案08-26