六年级下册数学教案

时间:2023-02-06 18:05:16 数学教案 我要投稿

人教版六年级下册数学教案(精选19篇)

  作为一名教师,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案要怎么写呢?下面是小编为大家收集的人教版六年级下册数学教案,欢迎阅读,希望大家能够喜欢。

人教版六年级下册数学教案(精选19篇)

  六年级下册数学教案 篇1

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:

  负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的'话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  六年级下册数学教案 篇2

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  和

  和5:2

  1/2:1/3 和6 : 4

  和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如: = 60:40

  内项: 6o

  外项: 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如: : = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的'基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的积是

  两个内项的积是

  外项的积等于内项的积。

  (4) 举例说明,检验发现。

  1

  两个外项的积是

  两个内项的积是

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如: = 60/40

  3.

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

  六年级下册数学教案 篇3

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的。教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的'应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3、巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

  六年级下册数学教案 篇4

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1、呈现例4中长方体、正方体和圆柱的直观图。

  2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1、观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2、实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的.份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3、推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1、做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2、做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

  六年级下册数学教案 篇5

  教学目标

  1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

  2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

  教学重点

  理解对称图形的概念及性质,会找对称轴。

  教学难点

  准确找全对称轴。

  教学准备

  1、教具:投影片、图片、剪刀、彩纸。

  2、学具:蝴蝶几何图片、剪刀、白纸。

  教学过程

  (一)导入新课

  你们看这些图形好看吗?观察这些图形有什么特点?

  (图形的左边和右边相同。)

  你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

  这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

  你怎么知道图形的左边和右边相同?(看出来的……)

  还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

  你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

  (二)讲授新课

  1、对称图形的概念。

  (1)对称图形和对称轴的定义。

  以剪出的图形为例,贴在黑板上。

  问:你们剪出的这些图形都有什么特点?

  (沿着一条直线对折,两侧的图形能够完全重合。)

  师:像这样的图形就是对称图形。(板书课题)

  折痕所在的这条直线叫做对称轴(画在图上)。

  问:现在谁能准确说出什么是对称图形?什么是对称轴。

  板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

  (2)加深理解概念。

  以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

  (3)巩固概念。(投影)

  ①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

  生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

  ②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

  投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

  生边回答老师边填在投影片上,并用小棒摆出对称轴。

  回答:

  1°任意三角形不是对称图形。

  2°等腰三角形是对称图形,有一条对称轴。

  3°任意梯形不是对称图形。

  4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

  5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

  6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

  7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

  8°等腰梯形是对称图形,有一条对称轴。

  ③小结。

  问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

  ④练一练

  打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

  第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

  2、对称图形的性质。

  (1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

  (2)测量并归纳性质。

  打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)

  认真度量,结果填在书上,你发现什么?

  投影订正。填后的结果:

  A点到对称轴的距离是0.6厘米。

  B点到对称轴的距离是1.2厘米。

  C点到对称轴的距离是0.6厘米。

  D点到对称轴的距离是1.2厘米。

  问:根据测量的结果你发现什么?

  (A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0.6厘米;B,C两点到对称轴的.距离也相等,都是1.2厘米。)

  问:根据度量结果,你们能总结出对称图形的性质吗?

  板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  (3)验证性质。

  量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

  看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

  (三)课堂总结

  今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

  (四)巩固练习

  1、第127页1题,画出对称轴。

  2、在你周围的物体上找出三个对称图形。

  3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

  4、你能否应用对称图特点,剪出美丽的窗花或五角星。

  六年级下册数学教案 篇6

  教学目标

  1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2.初步学会用负数表示一些日常生活中的实际问题。

  3.能借助数轴初步理解正数、0和负数之间的关系。

  重点难点

  负数的意义和数轴的意义及画法。

  教学指导

  1.通过丰富多彩的生活情境,加深学生对负数的认识。

  负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

  2.把握好教学要求。

  对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

  3.培养学生多角度观察问题,解决问题的能力。

  教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的'内驱力。

  课时安排

  共分3课时

  教学内容

  负数的初步认识

  (1)(教材第2页例1)。

  教学目标

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  重点难点体会负数的重要性。

  教学准备多媒体课件。

  情景导入

  1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

  3.引出课题并板书:负数的初步认识

  (1) 新课讲授教学教材第2页例1.

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

  课堂作业

  完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

  答案:—18℃温度低。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  六年级下册数学教案 篇7

  【教材分析】

  正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

  【学情分析】

  学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

  【设计理念】

  数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

  1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

  2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

  3.注重积累数学学习经验,渗透数学思想方法。

  4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

  【教学目标】

  1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

  3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

  【教学重点】

  理解正比例的意义。

  【教学难点】

  掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  【教学准备】

  教学课件。

  【教学过程】

  一、激趣设疑,铺垫衔接。

  1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

  2.结合现实情境回忆常见的数量关系。

  【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

  二、合作探究,发现规律。

  1.教学例1

  出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

  谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

  组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

  谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

  预设:

  (1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

  (2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80.

  根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

  提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

  根据学生的回答,板书:

  提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

  请学生完整地说一说表中的路程和时间成什么关系。

  【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

  2.教学“试一试”。

  让学生自主读题,根据表中已经给出的数据把表格填写完整。

  谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

  提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

  根据学生的回答,板书:

  让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

  【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

  3.抽象概括

  请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

  启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

  根据学生的回答,板书:,并揭示课题。

  请大家想一想,生活中还有哪些成正比例的量?

  【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

  三、分层练习,丰富体验

  1.“练一练”第1题。

  出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

  讨论:这两种相关联的量是按什么规律变化的的'呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

  学生按要求活动,并组织反馈。

  提问:张师傅生产零件的数量和时间成正比例吗?为什么?

  2.“练一练”第2题。

  出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

  3.练习十第1题。

  先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

  4.练习十第2题。

  出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

  出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

  结合学生的回答小结。

  追问:判断两种相关联的量是否成正比例关系,关键看什么?

  【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

  四、反思回顾,提升认识

  谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

  【板书设计】

  正比例的意义

  两种相关联的量

  六年级下册数学教案 篇8

  教学目标

  1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

  2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

  3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

  教学重难点

  重点:理解反比例的意义、正反比例的比较。

  难点:正确判断两个量是否成反比例

  教学工具

  PPT课件

  教学过程

  (一)、回忆旧知,引出新课。

  1、复述回顾:

  (1)、什么叫做成正比例的量?

  (2) 判定两种量成正比例的关键是什么?

  (3)、判定下面两种量是否成正比例?

  A、轮船行驶的速度一定,行驶的路程和时间。

  B、每小时织布的米数一定,织布总米数和时间。

  C、当圆柱体的高度一定时,体积和底面积。

  2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? ﹙板书:成反比例的量﹚

  (二)、自主学习,探索新知。

  1.探究反比例的意义

  今天老师给大家带来了一个实验,在实验之前,提出实验要求。

  (1)、记录杯子里水的高度,把表格中补充完整。

  (2)、观察水的高度是如何变化的?

  教师播放实验。

  水的高度是怎样随着底面积的变化而变化的?

  3、观看实验记录单,回答三个问题。

  ①表格中有哪两种量?

  ② 水的高度是怎样随着底面积的变化而变化的?

  ③相对应的杯子的底面积和水的高度的`乘积分别是多少?

  教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

  4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

  学生小组内讨论得出判断两种量成反比例的关键是有三个条件,

  1、两种相关联的量;

  2、变化方向相反;

  3、乘积一定。

  3.说一说:生活中还有哪些量成反比例关系?

  师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

  (1)学生自由举例。

  (2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

  三、巩固练习。

  (一)、基础练习

  1、判断下面每题中的两种量是不是成正比例,并说明理由。

  (1)轮船行驶的速度一定,行驶的路程和时间。

  (2)每小时织布的米数一定,织布总米数和时间。

  (3)当圆柱体的高度一定时,体积和底面积。

  (1)、表格中有( )和( )两种相关联的量。

  (2)、写出这两种量中相对应的两个数的积,并比较大小。

  (3)、这个积表示( )。

  (4)、表中的相关联的两种量成反比例吗?为什么?

  2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

  (1)煤的量一定,每天的烧煤量和能够烧的天数. ( )

  (2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )

  (3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )

  (4)华容做12道数学题,做完的题和没有做的题. ( )

  四、积极应用,拓展新知。

  出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

  学生小组内讨论,得出答案。

  五、拓展练习。

  1、判断下面每题中的两种量成比例吗?并说明理由。

  (1)、长方形的面积一定,它的长和宽。 ( )

  (2)、轮船行驶的速度一定,行驶的路程和时间。 ( )

  (3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )

  (4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )

  (5)、矿泉水瓶中喝掉的水和剩下的水。 ( )

  (6)、圆的半径和它的面积。 ( )

  (7)、铺地面积一定,方砖面积与所需块数。 ( )

  六、课堂小结。

  通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

  六年级下册数学教案 篇9

  教学目标

  1. 理解圆柱体积公式的推导过程,掌握计算公式。

  2. 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  3. 感受探索数学奥秘的乐趣,培养学习数学的积极情感,

  教学重难点

  教学重点:掌握和运用圆柱体积计算公式

  教学难点:圆柱体积公式的推导过程

  教学过程

  一、复习导入

  同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  出示学习目标:

  理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

  能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  二、图柱转化,自主探究,验证猜想。

  (一)猜想。

  1、下面长方体、正方体和圆柱的底面积都相等,高也相等

  (1).长方体和正方体的体积相等吗?为什么?

  (2).猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?

  2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

  [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

  (二)操作验证。

  1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

  在操作时,学生分组边操作边讨论以下问题:

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

  ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

  ?.拼成的近似长方体的高与原来的圆柱的.高有什么关系?

  2、小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  3、电脑演示操作

  (1)电脑演示圆柱体转化成长方体的过程:

  仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

  动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

  (分的分数越多,拼成的图形就越接近长方体)

  (2)根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  (3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

  三、练习巩固,灵活应用

  闯关1.

  1、填表。(课件)

  2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

  让学生试做,集体反馈。

  闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

  学生讨论、交流、汇报。

  小结:解决以上问题的关键是先求出什么?(生:底面积)

  闯关3.

  1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。

  2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米

  学生在练习本上独立完成,集体反馈。

  3、我是小法官

  1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )

  2.长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )

  3.圆柱体的底面积越大,它的 体积越大。( )

  4.圆柱体的高越长,它的体积越大。( )

  5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.( )

  4、填空

  1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。

  2. 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。

  拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

  四、课堂小结

  学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

  五、布置作业

  教科书第21页练习三第1-4题。

  六年级下册数学教案 篇10

  第一单元:

  认识负数

  教学内容:

  1、认识负数:教材第1—6页例1—例4以及练习一

  2、实践活动:面积是多少第10—11页

  教学目标:

  1、让学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0.

  2、让学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。

  3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。

  教学重点:正数、负数的意义

  教学难点:理解0既不是正数也不是负数

  课时安排:3课时

  (1)认识负数的意义

  教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题

  教学目标:

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

  3、体验数学与日常生活密切相关,激发学生对数学的兴趣。

  教学重点:在现实情境中理解正负数及零的意义。

  教学难点:用正负数描述生活中的现象。

  教学准备:温度计挂图等

  教学过程:

  一、谈话导入:

  通过复习,你知道这节课要学什么么?(板书:负数)

  说我们以前认识过哪些数?(自然数、小数、分数)

  分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)

  二、学习例1:

  1、你知道今天的最高温度么?你能在温度计上找到这个温度么?

  介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?

  在温度计上找到表示35℃的刻度。

  你知道什么时候是0℃吗?(水和冰的混合物)

  你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?

  分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。

  读一读:正35,负5

  分别说说在这3个不同的温度你的'感受。

  2、完成试一试:

  写出下面温度计上显示的气温各是多少摄氏度,并读一读。

  对零下几度,可能学生会不能正确地看,注意指导。

  3、完成第3页第2题的看图写一写,再读一读。

  简单介绍有关赤道、北极、南极的知识。

  4、完成第6页第4题:

  先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。

  5、读第7页第5题。,让学生说说体会。

  6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。

  三、学习例2:

  1、出示例2图片,介绍“海平面”“海拔”的基本知识。

  让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。

  再指一指吐鲁番盆地的海拔。

  指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。

  用你自己的理解来说说这样记录有什么好处?

  2、完成第6页第1题:用正数或负数表示下面的海拔高度。

  读一读第2题的海拔高度,它们是高于海平面还是低于海平面。

  三、认识正负数的意义:

  1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?

  你能用自己的话来说说怎样的数是正数?怎样的数是负数?

  0呢?为什么?

  2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。

  3、完成第6页第3题:分别写出5个正数和5个负数。

  四、全课小结:(略)

  六年级下册数学教案 篇11

  教学目标

  1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学关键 培养学生分析和解决实际问题的能力

  教学重点 复习分数乘除法应用题,掌握解题方法。

  教学难点 找准单位“1”

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的'?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

  六年级下册数学教案 篇12

  教学内容:

  比例的意义:

  使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

  教学重点:

  比例的意义。

  教学难点:

  找出相等的比组成比例。

  教学过程:

  一、旧知铺垫

  什么是比?什么叫比值?怎样求比值?

  2.求下面各比的比值。

  12:16

  3/4:1/8

  4.5:2.7

  二、探索新知

  1.教学例1.

  (1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

  ①说一说各幅图的情景。

  ②图中有什么相同之处?

  (2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?

  (3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

  学生回答教师板书:

  60:40=3/2

  操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

  学生回答长、宽比值。

  2.4:1.6=3/2

  两面国旗的.长和宽的比值相等。

  板书:2.4:1.6=60:40

  也可以写成:2.4/1.6.=60/40

  (4)找比例。

  师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?

  如:5:10/3=15:10

  5:10/3=2.4:1.6

  15?10=2.4/1.6

  15/10=60/40

  (5)什么是比例?

  表示两个比相等的式子叫做比例。

  (6)1:2是是比例吗?你能把它组成一个比例吗?

  (7)完成教材“做一做”。

  第1题。

  什么样的比可以组成比例?

  把组成的比例写出来。

  说一说你是怎么找的。

  同学之间互相交流,检验各自所写的比例。

  第2题。

  学生独立写比例,看谁写得多。

  同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

  3.课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  三、巩固练习

  完成课文练习六第1~3题。

  第一课时教学反思

  复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。

  在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式.在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)

  做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = 1.5∶3、4∶2 = 3∶1.5、2∶1.5 = 4∶3、1.5∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、 3:4=1.5:2.为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。

  练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。

  练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。

  六年级下册数学教案 篇13

  教学目标:

  通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。

  通过例2的复习进一步掌握求稍复杂的平均数问题的方法。

  通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。

  教学过程:

  复均数。

  出示例1

  问:要求七个班的平均人数,该怎样算?让学生自己算出结果。

  想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。

  通过计算让学生总结出求平均数问题的计算方法。

  出示例2

  学生想:要求五年级平均每人做多少个,必须先求出( )和( )

  让学生自己列式解答。

  让学生总结求较复杂平均数问题的计算方法。

  完成137页的“做一做”

  复习统计表

  出示137页的例题。

  让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。

  完成138页的“做一做”

  第二课时

  复习统计图

  教学目标:

  通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。

  教学过程:

  复习

  回答

  你学过哪几种统计图?

  出示某电子仪器一厂和二厂在三个方面的统计图。

  回答四个问题

  从折线统计图中可以看出,哪个厂的产值增长和快?

  从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多?

  从扇形统计图中可以看出,哪个厂的.外销产品占销售总数的百分比大?

  综合上面的分析,你认为哪个厂的生产搞得好?为什么?

  引导学生把三种统计图的特点和作用进行概括和总结。

  让学生看书或出示140页三种统计图的特点和作用表。

  六年级下册数学教案 篇14

  教学内容:

  课本第29——30页例2和“练一练”,练习五第6-9题。

  教学目标:

  1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  2、通过操作,观察,培养学生的推理能力,发展学生的思维。

  教学重难点:

  一个数乘分数的意义以及计算方法。

  课前准备:

  多媒体课件

  教学过程:

  一、创设情境

  同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

  复习:计算下面各题,并说出计算方法。

  3/7 ×2 5/8 ×1 1/10 ×5

  上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

  二、探究新知

  今天,我们来学习一个数乘以分数的意义和计算方法。

  1、教学例2

  出示例2的'图,然后出示条件:

  小芳做了10朵绸花,其中1/2是红花,2/5是绿花。

  引导学生理解:“其中12 “是什么意思?

  使学生明白是10朵中的1/2,然后出示问题

  红花有多少朵?

  引导学生看图理解:求红花有多少朵,就是求10朵的1/2

  让学生应用已有的知识经验解决。

  学生可能列式:10÷2=5(朵)

  在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。

  教师说明要求,学生列式解答。

  在此基础上教学第(2)题,怎样解决

  (2)绿花有多少朵?

  可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

  10÷5×2=4(朵)

  在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。

  学生独立计算,订正时指出:

  计算10×2/5可以先约分

  2、引导学生进行比较

  通过对上述两个问题的计算,你明白了什么?

  小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。

  计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。

  引导小结:求一个数的几分之几是多少,可以用乘法计算。

  三、巩固练习

  1、做练一练的第1题。

  先让学生根据题意涂色,然后列式解答。

  2、做练一练的第2题。

  通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3、练习五第6、7题。

  四、课堂总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、布置作业

  练习五第8、9题。

  教学反思:略.

  六年级下册数学教案 篇15

  教学内容:

  课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

  教学目标:

  1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

  2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

  3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

  教学重点:

  掌握百分数在实际生活中的应用。

  教学难点:

  渗透生活即数学的教学思想。

  课前准备:

  课件

  教学过程:

  一、认识、了解纳税

  教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

  税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

  提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

  二、教学新课

  1、教学例7。

  出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

  指名学生读题后全班学生再次读题。

  提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

  学生尝试练习。

  学生可能有下面两种方法:

  方法1:引导学生将百分数化成分数来计算。

  方法2:引导学生将百分数化成小数来计算。

  集体订正,教师板书算式。说说这题你是根据什么来列式的?

  强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的'总收入乘以税率百分之几,就求出了应纳税额

  2、做“试一试”。

  提问:这道题先求什么?再求什么?

  生:先求5000元的20%是多少?再求实际获得的奖金。

  学生板演与齐练同时进行,集体订正。

  3、完成练一练后全班交流。

  三、反馈练习

  只列式不计算。

  1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

  2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

  3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

  四、课堂总结

  提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

  五、布置作业

  练习十六第1—3题。

  六年级下册数学教案 篇16

  教学内容:

  课本第99页例9和“练一练”,练习十六第7-10题。

  教学目标:

  懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

  教学重点:

  按折扣进行计算。

  教学难点:

  对折扣的理解,并正确列出算式。

  课前准备:

  课件

  教学过程:

  一、创设情境,引入新课

  春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

  刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

  二、实践感知,探究新知

  1、提问:看到“打折”两个字,你会想到什么?

  学生全班交流。

  小结:工厂和商店有时要把商品减价,按原价的.百分之几出售。这种减价出售通常叫做打“折”出售。

  出示:华联超市的毛衣打“六折”出售。

  提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

  小结:“几折”就是十分之几,也就是百分之几十。

  提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

  质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

  学生交流课前搜集到的有关打折信息的意思。

  提问:说一说下面每种商品打几折出售。

  ①一辆汽车按原价的90%出售。

  ②一座楼房按原价的96%出售。

  ③一只旧手表按新手表价格的80%出售。

  2、教学例9。

  学生自己读题。

  出示例9的场景图。让学生说说从图中获取到哪些信息。

  提问:你知道“所有图书一律打八折销售”是什么意思吗?

  提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

  学生独立尝试。

  全班交流算式和思考过程

  解:设《趣味数学》的原价是ⅹ元。

  ⅹ×80%=12

  ⅹ=12÷0.8

  ⅹ=15

  答:《趣味数学》的原价是15元。

  3、引导检验,沟通联系。

  启发:算出的结果是不是正确?你会不会对这个结果进行检验?

  先让学生独立进行检验,再交流交验方法。

  启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

  4、指导完成“练一练”。

  先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

  三、巩固练习

  1、做练习十六第7题。

  指名口答。

  2、做练习十六第8题。

  让学生独立解答,再对学生解答的情况适当加以点评。

  四、课堂总结

  提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

  五、布置作业

  练习十六第9、10题。

  六年级下册数学教案 篇17

  教学内容:

  课本第79——80页例3和“练一练”,练习十三第3-5题。

  教学目标:

  1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

  2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,

  增强学生应用数学的意识。

  教学重难点:

  用分数乘法和减法解决一些稍复杂的实际问题。

  课前准备:

  课件

  教学过程:

  一、复习导入

  王芳看一本120页的`故事书,已经看了全书的1/3,还有多少页没有看?

  全校的三好学生共有96人,其中男生占3/8,女生有多少人?

  学生独立解答后,让学生说说想的过程。

  二、教学例3

  出示题目,要求学生默读。

  指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

  从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

  问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?

  教师指导学生画线段图。

  教师再根据线段图引导学生分析题意。

  “要求今年有多少班,可以先算什么?

  请你试着把这道题做一下。

  教师找出不同的解法进行板演,并让学生说说思路。

  三、完成”练一练“

  1、做第1题。

  (1)引导学生画线段图理解题意

  (2)看线段图分析

  (3)学生独立完成,指名板演,集体评讲。

  2、做第2、3题。

  (1)让学生独立完成,指名板演,集体评讲。

  (2)让学生说说自己的想法。

  四、巩固提高

  1、完成练习十三第3题。

  学生直接把结果写在书上,集体核对。

  2、练习十三第4题。

  3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

  集体评讲。

  五.本课总结。

  通过这节课的学习,你有什么收获呢?

  六、布置作业

  练习十三第5题。

  六年级下册数学教案 篇18

  教学要求:

  1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

  2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

  教学重点:认识解比例的意义。

  教学难点:应用比例的基本性质解比例。

  教学过程:

  一、复习引新

  1.做第32页复习题。

  出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的`前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

  2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

  4:3=2:1.5=x:4=1:2

  提问;根据积相等的式子,你能求出最后一题里的x吗?

  3.引入新课。

  在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

  二、教学新课

  1、教学例2.

  出示例2.提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

  2、教学例3.

  出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

  3、教学“试一试”。

  提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

  4、小结方法。

  提问:你认为根据比例的基本性质要怎样解比例?

  三、巩固练习

  1、做“练一练”。

  指名四人板演。其余学生分两组,每组两道题,做在练习本上。

  2、做练习六第8题。

  让学生做在课本上,指名口答。

  3、做练习六第l0题。

  学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

  4、做练习六第11题。

  学生口答、老师板书,看能写出多少个比例。

  四、讲解思考题

  提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

  五、课堂小结

  这堂课学习的什么内容?应用比例的基本性质怎样解比例,

  六、布置作业

  课堂作业:练习六第6题第(1)~(4)题,第7题。

  家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

  教学目标:

  1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

  2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的判断分析推理能力。

  六年级下册数学教案 篇19

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度×时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量×杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  教学内容:

  苏教版义务教育课程标准实验教科书第60-61页

  教材分析:

  在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  “实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

  在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

  教学目标:

  ⑴使学生会用工具测量两点间的距离、步测和目测的方法。

  ⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

  ⑶使学生体验数学与生活的密切联系,进一步增强用数学的`眼光观察日常生活现象,解决日常生活问题的意识。

  教学重点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学难点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学具准备:

  卷尺、标杆、50米跑道。

  教学流程:

  一、揭示课题,明确学习内容。

  ⑴揭示课题。

  板书课题——实际测量。让学生说说对课题的理解。

  ⑵了解测量工具。

  让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

  ⑶明确学习内容。

  测量地面上相隔较远的两点间的距离;步测和目测。

  二、了解测量知识,为实践活动作准备。

  ⑴测量相隔较远的两点间的距离。

  理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

  理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

  观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

  掌握测定直线的步骤:测定直线;分段量出;记录计算。

  ⑵学习步测的方法。

  理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

  掌握步测的方法:用步数×每一步的距离。

  理解步测的关键:确定平均步长。

  掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

  理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

  ⑶学习目测的方法。

  观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

  目测较短距离:人书本的长和宽;课桌的长和宽等等;

  理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

  三、实践活动。

  ⑴测定直线。

  ⑵确定平均步长。

  ⑶步测篮球场的长和宽。

  ⑷目测教学楼的长度。

  第三单元分数除法

  第10课时按比例分配的实际问题

  教学内容:

  课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

  教学目标:

  1、使学生理解按比例分配实际问题的意义。

  2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

  教学重难点:

  理解按比例分配实际问题的意义,掌握解题的关键。

  课前准备:

  课件

  教学过程:

  一、创设情境、引入新知

  根据信息填空:

  (1)男生有31人,女生有21人,男生人数是女生人数的。

  (2)红花的朵数与黄花朵数的比是3:2.你能联想到什么?

  师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

  二、探究新知

  1、出示例11中的实物图及例题。

  (1)让学生阅读题目后说说你知道哪些信息?

  (2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

  ①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

  ②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

  ③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3.

  师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

  学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

  说说你是怎样做的?

  方法一:3+2=530÷5×330÷5×2

  方法二:30×3/530×2/5

  2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

  说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

  如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

  3、完成练一练第1题。

  4、完成试一试。

  出示试一试。

  提问:“按各小组人数的比分配”是什么意思?你想到了什么?

  5、归纳(讨论)。

  (1)比较例题与试一试题目在解答方法上有什么共同特点?

  (2)怎么解答?

  求总份数,各部分量占总数量的几分之几,最后求各部分量。

  (3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

  三、应用比的知识解决实际问题

  1、练一练第2题。

  独立完成后进行交流

  指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?

  2、练一练第3题。

  独立填表,完成后集体核对。

  3、练习十第1题。

  四、课堂总结

  这节课学过以后,你有什么收获?

  五、布置作业:

  练习十第2、3题。

  教学反思:

  教学过程:

  (一)导引探究,由表及里

  教学例1,认识成正比例的量。

  1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

  时间(时)123456……路程(千米)80160240320400480……

  在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

  2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

  3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

  4.让学生根据板书完整地说一说表中路程和时间成什么关系。

  [数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

  (二)自主探究,尝试归纳

  出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

  速度(千米/时)406080100120……时间(时)3020151210……

  1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

  2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

  3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

  [从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

  (三)对比探究,把握本质规律

  1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

  多媒体呈现:

  例1路程/时间=速度(一定)

  路程和时间成正比例

  例2速度×时间;路程(一定)

  速度和时间成反比例

  2.探究活动。

  (1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

  (2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

  [例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

  (3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

  启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

  根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

  [概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

  3.组织对比性练习。

  (1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

  表1

  数量/本2030405060……总价/元3045607590……

  表2

  单价/元1.52456……数量/本4030151210……

  在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

  在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

  [将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

  (2)成比例与不成比例的对比练习。

  下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

  ①圆的直径和周长。

  ②小麦每公顷产量一定,小麦的公顷数和总产量。

  ③书的总页数一定,已经看的页数和未看的页数。

  [这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

  (3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

  [举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

【六年级下册数学教案】相关文章:

六年级下册数学教案01-24

六年级下册数学教案01-04

六年级下册数学教案01-15

六年级下册数学教案01-24

六年级下册人教版数学教案11-13

人教版六年级下册数学教案04-10

人教版六年级下册数学教案08-25

小学六年级下册数学教案10-11

苏教版六年级下册数学教案02-06

人教版六年级下册数学教案06-17