精选小学数学教案汇编五篇
作为一位杰出的教职工,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?以下是小编为大家整理的小学数学教案5篇,欢迎阅读与收藏。
小学数学教案 篇1
教学目标:
1、通过练习进一步认识元、角、分之间的关系,能根据元、角、分之间的进率进行单位间的简单换算,比较不同单位表示的钱数的大小。能进行一些简单的应用和解决简单的实际问题。
2、通过具体购物情境,体会购物的总钱数和购物的数量,积累购物的初步经验;感受购物问题里的数量关系,发展初步的思维能力。
3、体会元、角、分在生活里的广泛应用,感受人民币的实际价值;培养独立思考、探究交流的意识。
教学重点:
元、角、分简单换算和应用
教学难点:
理解购物实际问题的数量关系
教学准备:
课件
教学过程:
1、做练习十第3题
2、做练习十第4题
3、做练习十第5题
4、做练习十第6题
5、做练习十第7题
一、回顾引入
1、回顾旧知
提问:这单一已经认识了人民币的那些知识?请吧你的认识和大家说说
学生自由说出自己的认识。
2、引入课题
小朋友真棒!为了巩固和应用小朋友已经掌握的知识,今天这节课我们就来继续练习有关元、角、分的知识。(板书课题)
二、基本练习
1、再现就知
出示各种面值的人民币,让学生说说各是多少钱。
2、口答
提问:1元人民币可以换几张1角的?可以换几张5角的?为什么?
(板书:1元=10角)
如果用分币来换,几分可以换成1角?(板书:1角=10分)
1角2分=()分
1元2角=()角
1角2分和1元2角哪个钱多?
3、做练习十第1题
学生独立完成在课本上。交流结果,集体订正,指名说说各是怎样想的。
指出:把1元几角换算成多少角,可以按1元是10角,合起来是十几角;把十几角换算成几元几角,可以想其中10角是1元,就可以很快知道是1元几角。
4、做练习十第2题
学生先独立填写在课本上,在集体交流。
让学生说说怎样比的。
提问:题里告诉我们什么条件,要回答什么问题?
学生同桌讨论够不够,说说自己想法。
指出:三样商品各买一件,共需要28元,如果带去的钱比28元多,就够了;如果带去的钱比28元少就不够。
先让学生了解价格和解决问题的要求。
提问:把10元钱用完是什么意思?
先同桌交流,再全班交流。
学生观察情境,说说知道了什么,求什么问题。
提问:这里找回是什么意思?
让学生独立列式解决,集体交流。
学生独立列式计算。组织交流算式和得数,要求学生口答,并提问:计算牛奶的价钱你是怎样想的?
提问:你还能提什么问题?
学生提出问题,口头列式,教室板书。
提问:小宁买了什么?就要多少钱?如果付的都是10元的,应该付多少张?
先同桌讨论,再集体交流,要求说说自己的想法。
三、应用练习
1、交流小结。
提问:这节课练习了什么?你有什么收获?
2、介绍你知道吗?
3、布置课后实践
四、练习小结
练习十第8题。
小学数学教案 篇2
教学内容:人教版第九册第三单元的《三角形面积的计算》,数学教案-三角形面积。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:掌握三角形面积的计算方法。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
一、复习:
提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?
二、导入新课:
你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?
三、新课:
(一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1平方厘米。
下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。
小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。
那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。
像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明
师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积,小学数学教案《数学教案-三角形面积》。板书:三角形面积的计算
师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。
(二)下面老师就请同学们拿出给你们准备的2个直角三角形 、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)
那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?
1、先用2个完全一样的直角三角形拼拼看?
(长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)
我们一起来看一下电脑是怎样清楚地操作的?
2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好
3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读 回答真好
4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。
想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系? 2、这个平行四边形的底和高分别与三角形的底和高有什么关系?
开始观察,观察好,同桌互相交流,后回答,屏幕演示。
反馈提问:“为什么要除以2?”
5、翻书P76,填充,齐读,同样我们也可以用字母面积公式
板书:
等底等高
三角形的面积=平行四边形的面积÷2 表示什么意思
=底×高÷2
s=ah÷2
(三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷ 2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。
1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。
2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。
出示例:求的是什么?我们应根据什么?请同学们做在自备本上。
3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。
请看第1个题目:
1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。
2、判断,说明理由:(请用手势表示)
2个三角形都可以拼成一个平行四边形。
三角形底是6cm,高是3cm,面积是18cm。
三角形底是8分米,高是40cm,面积是16平方分米。
三角形底是9米,高是4米,面积是18米。
从以上练习,你认为我们在计算三角形面积时应该注意些什么? 1、÷2
2、单位统一
3、面积单位
3、选择:
下列哪个三角形是4×3÷2=6平方cm。
单位:厘米
3 3
4 4
小结:我们在做求三角形面积时一定要注意……
一个三角形的底是20厘米,高是2.5分米,它的面积是( )
1、20×2.5÷2 2、20×2.5 3、20×25÷2
小结:你认为在做作业时注意( )
4、求每个三角形的面积(只列式不计算)
底是4.2米,高是2米。
底是3分米,高是20厘米。
高是6米,高比底短2米。
底是12米,高是底的一半。
四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。
你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。
三角形的土地 一半 底 高
学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?
小学数学教案 篇3
1.联系实际,建立图形放大、缩小的概念。
数学里图形放大或缩小的含义与生活中的放大、缩小经常是不同的。生活中会把图形由小变大视作放大,由大变小视为缩小。数学里的图形放大或缩小,它的每条边都按一定的比例变化,即每条边的长度都放大到原来的几倍或缩小到原来的几分之一。例1教学图形放大、缩小的含义,先观察在电脑上放大长方形的现象,分别研究长方形放大后与放大前长、宽的关系。然后联系长方形放大揭示图形放大的数学含义。教材依次讲了三句话:首先是长方形的每条边放大到原来的2倍,这是对长放大到原来的2倍,宽也放大到原来2倍的概括。然后是放大后的长方形与原来长方形对应边长的比是2∶1,用比描述图形放大时边的长度变化。这里把放大前、后两个长方形的长称为对应边,宽也称为对应边,必须把放大后图形的边的长度作为前项,原来图形的边的长度作为后项。最后是把原来的长方形按2∶1的比放大,让学生体会由于放大后与放大前两个长方形的对应边的长度关系是2∶1,因而把图形的放大说成2∶1。这里还示范了图形放大的规范表述按2∶1的比放大。
在初步理解图形放大的基础上,教材引导学生主动迁移,认识图形的缩小。让学生说说缩小后的长方形的长、宽分别是原来长方形的几分之几,解释图形按1∶2缩小的含义,初步形成图形缩小的概念。
例2在方格纸上画图形。利用方格纸等形式按一定比例将简单图形放大或缩小是《标准》的要求,因为方格能直观显示每条边的变化情况,操作方便,有利于概念的应用和巩固。教材引导学生在画图前先思考放大(或缩小)后图形的长、宽各是几格,应用概念进行推理,为正确画图做准备。在画图以后,还要观察原来的图形、放大后的图形、缩小后的图形,再次体会图形放大、缩小时,每条边的长度都按相同的比变化。练习九第1题能使学生进一步清晰图形放大、缩小的概念。方格纸上的⑤号图形是①号长方形放大后的图形,因为⑤号图形的长、宽分别是①号图形长、宽的3/2;③号图形是①号长方形缩小后的图形,因为③号图形的长、宽分别是①号长方形长、宽的1/2。而②号、④号图形与①号长方形比,各条边没有按相同的比变化,它们都不是①号长方形缩小或放大后的图形。
根据图形的放大或缩小,可以写出许多关于线段长度的比。在例3的情境中,长方形照片放大后与放大前的长的比是9.6∶6.4,宽的比是6∶4;放大前长方形长与宽的比是6.4∶4,放大后长方形长与宽的比是9.6∶6。前面两个比在例1和例2里已经多次接触,例3引导学生写出后面两个比,利用这两个比教学比例的意义。先分别计算6.4∶4和9.6∶6的比值,从比值都是1.6得出这两个比相等,可以写成6.4∶4=9.6∶6或6.4/4=9.6/6,指出表示两个比相等的式子叫做比例,突出比例是比值相等的两个比组成的等式。然后让学生思考放大后与放大前两张照片长的比和宽的比也能组成比例吗,经历写出比、算比值、发现比值相等、组成比例的过程,体会比例的意义。练一练的四组比中,如果同组的两个比的比值相等,就可以组成比例;如果比值不相等,两个比就不能组成比例,进一步巩固比例的概念。
长方形放大后与放大前的长的比和宽的比相等,是例1教学的图形放大的含义。在例3中,又发现长方形放大前长与宽的比和放大后长与宽的比相等,从新的视角体会了图形放大的含义。例3既从放大前长与宽的比和放大后长与宽的比组成比例,又从放大后与放大前长的比和宽的比组成比例,引导学生利用比例的意义进一步完善图形放大的概念。
除了图形放大与缩小,从常见的数量关系中也能找到比例。练习九第3题,一辆汽车上午行驶的路程和时间的比与下午行驶的路程和时间的比能组成比例。第7题购买同一种铅笔,总价与数量的比能组成比例;大小不同的正方形,周长与边长的比能组成比例。这些素材能加强对比例的理解,还为以后教学正比例作了铺垫。
2.联系实际,发现和应用比例的基本性质。
例4教学比例的基本性质,大致分五步进行: 第一步在按比例缩小三角形的情境中写出一些比例,为研究比例的基本性质准备充分的素材;第二步教学比例的内项和外项,这是认识比例基本性质必须具备的概念;第三步观察已经写出的几个比例,初步发现比例的两个外项的积等于两个内项的积;第四步重新写出一些比例,看看是否具有同样的规律,并在字母表示的比例上概括这样的规律;第五步指出发现的规律是比例的基本性质,并在写成分数形式的比例上体会这一性质。
把三角形按比例缩小,联系图形缩小的含义,学生可能想到缩小后与缩小前两个三角形底的比和高的比相等,或者高的比和底的比相等,还可能想到缩小前、后每个三角形底与高的比相等,或者高与底的比相等。于是,在交流时出现四个不同的比例。教材指出3∶6=2∶4里的3和4是比例的外项,6和2是比例的内项,让学生说说其他三个比例的内项和外项各是几。学生容易发现,如果6和2同时做比例的外项,那么3和4是比例的内项;如果6和2同时做比例的内项,那么3和4是比例的外项,从而体会这几个比例两个外项的积等于两个内项的积。再写出一些比例,看看是否有同样的规律,检验前面四个比例的规律是不是适用于所有的比例。通过更丰富的实例,进一步体会两个外项的积等于两个内项的积是所有比例的共同规律。在此基础上,把比例用字母表示成a∶b=c∶d,写出ad=bc,概括了上面的规律,通过符号化的方式表示了比例的基本性质。
试一试应用比例的基本性质,判断3.6∶1.8和0.5∶0.25能否组成比例。思考线索应该是: 如果这两个比能够组成比例,那么3.60.25的积与1.80.5的积应该相等;如果这两个比不能组成比例,那么3.60.25的积与1.80.5的积不相等。于是分别计算3.60.25和1.80.5,并比较两个积的大小。练一练是试一试的延伸,由于612=418,所以6、4、18和12这四个数能组成比例。而4、5、6和8这四个数不能组织积相等的两个乘式,因而它们不能组成比例。把6、4、18和12组成比例,可以把6和12同时作外项,4和18同时作内项,也可以把6和12同时作内项,4和18同时作外项,一共能写出8个不同的比例。对于每个学生来说,只要求写出一个比例,并在交流时知道还能写出其他比例,不要求每个学生都写出8个比例。
例5应用比例的知识解决图形放大的实际问题,包括根据图形放大的含义列出比例,以及利用比例的基本性质解比例两个内容。先根据照片放大后与放大前长的比和宽的比能组成比例这个知识写比例,发现要写的比例里有三个项是已知数,另一个项是未知数,于是想到把放大后照片的宽设为x厘米,列出比例解决问题。这个比例也是一个方程,教材写出了解方程的第一步6x=13.54,让学生思考这一步计算的依据是什么,体会这里应用了比例的基本性质,最后还指出求比例中的未知项叫做解比例。
试一试解写成分数形式的比例,进一步熟悉比例的内项和外项。已经写出1.2x=引导学生应用比例的基本性质,体会这是解比例的关键步骤。练一练解分别由整数、分数或小数组成的三个比例,要应用整数、分数或小数的乘、除计算。教材里没有出现分数与小数共同组成的比例,是因为《标准》不要求进行分数与小数的乘、除计算。
3.以图形的放大、缩小为基础,教学比例尺。
平面图是把现实的平面按一定比例缩小绘制成的,从平面图想像实际平面的数学活动是把图形放大,比例尺刻画了平面图和实际平面之间的放大、缩小关系。
例6教学比例尺的意义,首先要让学生在实际情境中识别实际距离和图上距离,这些是与比例尺有关的概念。其次分别写出草坪长的图上距离和实际距离的比,宽的图上距离和实际距离的比。在写比的时候,要指导学生统一图上距离与实际距离的单位,便于写比和化简比。通过交流,体会把实际距离改写成以厘米为单位的数量,写出的是整数比,把图上距离改写成以米为单位的数量,写出的是小数比,前者比后者更方便一些。例题的教学重点是建立比例尺的概念,先指出图上距离和实际距离的比叫做平面图的比例尺,由于学生已经两次写出这样的比,所以建立比例尺的概念是感性认识的抽象提升;再用数量关系式进一步表达比例尺的意义和计算方法,教材里同时出现图上距离∶实际距离=比例尺和图上距离/实际距离=比例尺。
比例尺1∶1000表示图上距离是实际距离的1/1000,实际距离是图上距离的1000倍,这是对比例尺1∶1000的意义作出的具体解释。教材让学生说出这些关系,进一步体会比例尺的意义。从图上距离与实际距离间的倍数关系,还能得到图上距离1厘米表示实际距离10米,这就引出了比例尺的另一种表示形式线段比例尺。数值比例尺和线段比例尺都是比例尺的表示形式,它们可以相互转化。例题从数值比例尺引出线段比例尺,练一练第1题分别解释数值比例尺与线段比例尺的具体含义,两种形式的比例尺之间的关系就能得到沟通。第2题求平面图的比例尺,学生在例题里进行过写出图上距离与实际距离的比并化简的活动,应该有能力独立完成这道题。
例7已知平面图的比例尺以及明华小学到少年宫的图上距离,求两地之间的实际距离。由于学生对比例尺1∶8000的意义会有不同的解释,因而可能出现不同的`解题思路和方法。有的学生会从图上距离与实际距离的倍数关系进行思考,有的学生会把数值比例尺转换成线段比例尺,列式和计算比较方便。例题还引导学生用解比例的方法解题,表示比例尺意义的数量关系式是列比例依据的相等关系。试一试里根据已知的比例尺和实际距离,求图上距离。虽然已知条件和要求的问题与例题不同,但解题思路是一致的,对比例尺的意义作出具体解释是思考的关键,教材允许学生按自己的思路选择解法。要注意的是,试一试要求在例7的平面图上表示出医院的位置,算出学校到医院的图上距离后解题并没有结束,还要在学校正北方3厘米处作个记号表示医院,并在学校与医院之间连条线段。
4.进一步研究图形放大,发现面积与长度变化的关系。
《面积的变化》分三段设计实践活动。第一段的活动有:分别测量放大前、后两个长方形的长和宽,根据图形放大的含义写出对应边长的比;估计两个长方形面积的比;利用测量得到的边的长度计算两个长方形的面积比。
这一段活动的目的是进一步巩固图形放大的概念,体会图形放大,面积扩大的倍数与边长扩大的倍数是不相同的。第二段的活动有:依次测量正方形、三角形、圆放大前、后的有关长度;分别计算各个图形放大前、后的面积,把长度与面积的数据填入教材的表格里;研究图形放大后与放大前的边长比与面积比之间的关系。这一段活动要通过几个实例的研究,发现图形放大,面积扩大的倍数是长度扩大倍数的平方。第三段在东港小学的校园平面图里选择一幢建筑或一处设施,测量图上的长度,算出实际占地面积,应用前面发现的规律。因为这幅平面图的比例尺是1∶1000,实际距离是图上距离的1000倍,所以实际面积是图上面积的倍数就是1000的平方,计算必须细心,防止错误。当然,也可以利用图上距离与比例尺,先算出实际距离,再计算实际面积。不过,这种方法没有应用发现的规律,要尽量引导学生采用前一种方法,体验发现规律的乐趣和应用规律的意义。
小学数学教案 篇4
教学内容:
教科书第18页例4和做一做
教学目标:
1.会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;
2.能根据乘除法之间的关系进行验算,提高计算的正确率;
3.养成良好的计算、验算习惯。
教学重点:
掌握小数除以整数的计算方法,你能正确计算
教学难点:
特殊情况的小数除以整数的算法
教学过程:
一、复习引入
1.口算
2.4÷2 4.8÷6 9.09÷9
8.24÷8 6÷5 1÷5
2.填空,并说出为什么?
(复习乘除法之间的关系,为下面学习验算做好准备)
3.列竖式计算(生板演)
(1)7.44÷4 (2)7.44÷8
(3)102÷24 (4)4.551÷5
四道逐渐变难
二、探究新知
1.在评价学生的计算结果中帮助学生学会归纳和总结。
师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?
学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。
师:做小数除以整数还有什么要提醒大家的?
四人小组讨论并归纳
学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。
课件出示补充。
2.在暴露计算错误的过程中引导学生学会验算。
(1) 师:为了保证我们的计算正确,怎么办?——验算
验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?
学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。
师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?
(2)门诊台
课件出示。
小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确
三、巩固练习
1.小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?
37.8÷6=63 7.4÷5=1.4……4
2.计算并验算
43.5÷29 18.9÷27
1.35÷15 207÷45
3.书第20页:7、8题
四、课堂小结
说说小数除以整数的计算法则,有什么要提醒大家的?
小学数学教案 篇5
教学目标
1.使学生知道计算大面积的土地用平方千米,知道平方千米与公顷之间的关系.
2.使学生掌握土地面积单位间的进率和简单换算,培养学生的空间观念.
教学重点
平方千米和公顷之间的关系.
教学难点
土地面积单位间的进率和简单换算.
教学过程
一、复习准备.
1.板演:一块长方形稻田,长200米,宽150米,合多少公顷?
订正时,让学生说一说是怎样想的?
2.卡片口算.
1公顷=( )平方米 4公顷=( )平方米
20000平方米=( )公顷 70000平方米=( )公顷
二、学习新课.
1.引入.
教师提问:(1)计算土地面积的单位有哪些?
(2)边长是多少的正方形土地,面积是1公顷?
(3)1公顷等于多少平方米?
教师叙述:计算土地面积的单位有平方米、公顷,计算大面积的土地用平方千米做单位.今天我们学习土地面积单位―――平方千米.(教师板书课题:土地面积单位―――平方千米)
2.教学平方千米.
教师叙述:上节课我们学习了边长为100米的正方形土地面积,它的面积是100100=10000(平方米),也就是1公顷.(板书:1公顷=10000平方米)
边长1000米(1千米)的正方形土地,它的面积是10001000=1000000(平方米),也就是1平方千米.1平方千米也叫1平方公里,我国领土面积大约是960万平方千米,也可以说我国领土面积大约是960万平方公里.
同学们想一想:1平方千米等于多少公顷呢?
(100000010000=100,被除数和除数各划去4个零.)
1平方千米=1000000平方米=100公顷
从上面可以看出,公顷和平方千米这两个土地面积单位间的进率是100.前面我们学过平方米与公顷这两个土地面积单位间的进率是10000.我们把这些土地面积单位按从大到小排列,它们之间的关系是这样的.
1平方千米=100公顷
1公顷=10000平方米
1平方千米=1000000平方米
三、巩固反馈.
1.基本练习.
2平方千米=( )公顷 8平方千米=( )公顷
4000公顷=( )平方千米 30000公顷=( )平方千米
2.综合练习.
(1)8公顷=( )平方米 4平方千米=( )公顷
30000平方米=( )公顷 9000000平方米=( )平方千米
3400公顷=( )平方千米
(2)在下面○里填上>、<或=.
3公顷○2900平方米 200公顷○2平方千米
4平方千米○404公顷 8000平方米○8公顷
3.思考性练习.
一个占地1公顷的正方形苗圃,边长各加长100米.苗圃的面积增加多少公顷?先让学生画出这道题的示意图.如下图:
组织学生讨论:
(1)1公顷的正方形苗圃,原来的边长各是多少?
(2)边长各增加100米后,边长是多少?
计算出增加后苗圃的面积,即(100+100)(100+100)=40000(平方米)
换算成公顷:40000平方米=4公顷
苗圃面积增加了4-1=3(公顷).
如果有的同学从图中直观地看出增加了3公顷,也是可以的.
4.课后练习.
(1)了解本区或本乡的面积大约是多少平方千米.
(2)5平方千米=()公顷 300公顷=()平方千米
4平方千米=()公顷=()平方米
12000000平方米=()公顷=()平方千米
(3)3公顷○2900平方米 200公顷○2平方千米
4平方千米○404公顷 8000平方米○8公顷
【小学数学教案】相关文章:
小学数学教案08-22
小学数学教案08-24
小学数学教案06-12
小学数学教案08-27
小学的数学教案03-24
小学的趣味数学教案12-24
《左右》小学数学教案04-01
秋季小学数学教案10-10
苏教版小学数学教案03-16
小学数学教案模版07-13