八年级上学期数学教案

时间:2022-07-20 18:29:01 数学教案 我要投稿

八年级上学期数学教案

  在教学工作者开展教学活动前,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?下面是小编为大家收集的八年级上学期数学教案,欢迎阅读与收藏。

八年级上学期数学教案

八年级上学期数学教案1

  一、学习目标:

  1.多项式除以单项式的运算法则及其应用.

  2.多项式除以单项式的运算算理.

  二、重点难点:

  重点:多项式除以单项式的运算法则及其应用

  难点:探索多项式与单项式相除的运算法则的过程

  三、合作学习:

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1.计算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提问:

  ①说说你是怎样计算的

  ②还有什么发现吗?

  (三) 总结法则

  1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

  2.本质:把多项式除以单项式转化成______________

  四、精讲精练

  例:(1)(12a3-6a2+3a)÷3a;

  (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  随堂练习:教科书练习

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

  E、多项式除以单项式法则

八年级上学期数学教案2

  教学目的

  1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

  2.熟识等边三角形的性质及判定.

  2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

  教学重点:

  等腰三角形的性质及其应用。

  教学难点:

  简洁的逻辑推理。

  教学过程:

  一、复习巩固

  1.叙述等腰三角形的性质,它是怎么得到的?

  等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的`,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。

  等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

  2.若等腰三角形的两边长为3和4,则其周长为多少?

  二、新课

  在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?

  1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

  2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

  3.上面的条件和结论如何叙述?

  等边三角形的各角都相等,并且每一个角都等于60°。

  等边三角形是轴对称图形吗?如果是,有几条对称轴?

  等边三角形也称为正三角形。

  例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

  分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

  问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

  问题2:求∠1是否还有其它方法?

  三、练习巩固

  1.判断下列命题,对的打“√”,错的打“×”。

  a.等腰三角形的角平分线,中线和高互相重合( )

  b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

  2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

  3.P54练习1、2。

  四、小结

  由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

  五、作业:1.课本P57第7,9题。

  2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

【八年级上学期数学教案】相关文章:

中班上学期数学教案《分类》09-18

小班数学教案及教学反思《猴子上学》09-22

大班上学期数学教案《量沙》09-18

小班上学期数学教案《好玩的轮子》08-23

小班上学期数学教案《送饼干》08-23

中班上学期数学教案《迷路的公主》08-23

中班上学期数学教案《数字宝宝》08-23

大班上学期数学教案《蚂蚁搬家》08-21

大班上学期数学教案《月历宝宝》08-21

大班上学期数学教案《魔力地砖》08-21