四年级数学下册《解方程》说课稿

时间:2021-06-15 10:11:59 说课稿 我要投稿

四年级数学下册《解方程》说课稿

  篇一:四年级数学下册《解方程》说课稿

  一、教材研读。

四年级数学下册《解方程》说课稿

  1、教材编排。

  (1)逻辑分析:

  方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。并且已经采取逐步渗透的方法来培养代数思维。例如:( )+8=14,90-( )〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

  (2)语言信息及价值分析:

  本课教材的三幅情境图,由浅入深,由具体到抽象,层层递进。第一幅情境借助平衡,让学生领悟等式;第二幅情境完成数量关系向等量关系的转化;第三幅情境引发学生思考,让学生从不同角度找到多种等量关系,列出方程。

  2、教学目标。

  (1)结合具体情境,建立方程的概念。

  (2)在简单情境中寻找等量关系,并会用方程表示。

  (3)经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。

  3、教学重难点:

  (1)重点:在简单具体情境中寻找等量关系,并会用方程表示。抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

  (2)难点:数量关系向等量关系的转化。

  二、学情分析:

  学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

  三、流程设计:

  为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:

  (一)引“典”激趣,诱发思考。

  引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

  (二)探究新知,建立概念。

  1、借助天平,启发思考。

  我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。

  第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。

  3、变换角度,深入思考。

  第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=2000,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。

  4、建立概念,判断巩固。

  在前面教学的基础上总结、抽象出方程的含义。通过三道例题的.简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。

  (三)生活应用,提高能力。

  数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。

  附板书:

  方程

  含有未知数的等式叫方程。

  左边的质量=右边的质量 两瓶水的水量+一杯水的水量=一壶水的水量

  篇二:四年级数学下册《解方程》说课稿

  学习目标:

  1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。

  2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。

  3、初步培养学生的观察、抽象概括等能力。

  学习重点:会用方程表示事物之间简单的数量关系。

  学习难点:能根据图义,找到等量关系列出方程。

  学习过程:

  一、谈话引入。

  师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)只知道自己的年龄还不行,谁知道妈妈今年多大了?(学生说)自己的年龄,妈妈的年龄对你来说是已知数,那老师的年龄对你来说是……。。(未知数)以此来引出未知数。

  二、利用等量关系,正确列出等式。

  1、出示天平图1:

  天平左边10克,天平右边:2克和一个樱桃 师:看天平的显示,谁能列出一个等式?(樱桃的质量+ 2克=10克),如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)

  2、出示情景图2:

  四盒种子的质量一共是2000克。

  你从图中发现了什么?(4盒种子的质量=2000克)

  师:能根据这个相等关系写出一个等式吗?

  师:请你给同学们介绍一下你的等式,先说字母表示什么意思? 师:如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?( 板书:4y=2000)

  师:下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)

  3、课件出示图3:

  一壶水刚好倒满两个开水瓶和一个杯子。 师:你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=2000毫升)

  师:如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=2000)

  4、理解方程的意义。

  师:刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=10 4y=380 2z+200=2000)

  (1)同桌交流。说一说:上面的等式有什么共同特点?

  (2)全班交流。

  教师小结:这样含有未知数的等式叫方程。(板书课题:方程) 师:自己读一读,你认为关键词是什么?

  (3)巩固知识。

  师:说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)

  5、会写方程 师:你会自己写出一些方程吗?写下来同桌交换检查。

  (学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)

  三、巩固练习。

  1、判断

  下面式子哪些是方程,哪些不是方程?

  35+65=100 x -14>72 y +24

  5x+32=47 28<16+14 6(y+2)=42

  2、练一练课本67页第一题说一说各图中的等量关系,再列出方程。

  四、总结评价。

  师: 关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。

  板书设计:

  方程

  樱桃的质量+2克=10克x+2=10

  每盒种子的质量×4=2000克 4y=2000

  每个热水瓶盛水量×2+200=2000克 2z+200=2000

  含有未知数的等式叫做方程。

【四年级数学下册《解方程》说课稿】相关文章:

小学数学解方程说课稿04-07

《解方程》说课稿03-24

解方程的说课稿06-13

解方程说课稿11-02

解方程(二)说课稿11-21

解方程说课稿范文05-23

解方程的说课稿范文02-24

《解方程》说课稿(精选6篇)08-16

解方程(二)说课稿范文12-14