角平分线说课稿

时间:2021-06-09 16:25:40 说课稿 我要投稿

角平分线说课稿

  角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。下面是小编为大家整理的角平分线说课稿,欢迎阅读。

角平分线说课稿

  一、教材分析

  (一)地位和作用:

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,本节课的教学内容包括探索并证明角平分线性质定理的逆定理,会用角平分线性质定理的逆定理解决问题。是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。角平分线的性质和判定为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面的学习奠定基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

  (二)教学目标

  1、知识目标:

  (1)探索并证明角平分线性质定理的逆定理。

  (2)会用角平分线性质定理的逆定理解决问题了解尺规作图的原理及角的平分线的性质。

  2、基本技能

  让学生通过自主探索,运用逻辑推理的方法证明关于角平分线的判定,并体会感性认识与理性认识之间的联系与区别。

  3、数学思想方法:从特殊到一般

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

  设计意图:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。

  (三)教学重难点

  进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把本节课的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,

  难点是:

  (1)对角平分线性质定理中点到角两边的距离的正确理解;

  (2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的'本质内容,在学生脑海中加深印象,从而对性质定理正确使用;

  (2)通过对比教学让学生选择简单的方法解决问题;

  (3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。

  二、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”。鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合。

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变。这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。

  三、教学过程

  (一)创设情景 引出课题

  出示生活中的数学问题:

  问题1 如图,要在S 区建一个广告牌P,使它到两条高速公路的距离相等,离两条公路交叉处500 m,请你帮忙设计一下,这个广告牌P 应建于何处(在图上 标出它的位置,比例尺为1:20 000)?

  [设计意图]利用多媒体渲染气氛,激发情感。

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论。李薇同学很快就回答:“在两条路夹角的平分线上,因为由昨天我们学习的角平线的性质定知道到角两边路离相等的点在角的平分线上。”其余同学对这一回答也表示了认可。此是教师提问:角平分线的性质的题设是已知角平分线,结论是有到角两边距离相等,而此题是要求角两边距离相等,那这个点在这个角的平分线上吗?这二者有区别吗?”学生晃然明白过来这二者是有区别的,此时教师引导学生分析:“只要后者是正确的,那李薇同学的回答也就可行了,这便是今天我们要研究的内容”由此引入本节新课。。

  [设计理由]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了角平分线的性质,为后续的学习作好知识上的储备。

  (二)、主体探究,体验过程

  问题2交叉角的平分线的性质中的已知和结论,你能得到什么结论,这个新结论正确吗?让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质。

  (角的内部到角的两边距离相等的点在角的平分线上。)

  追问1你能证明这个结论的正确性吗?

  结合图形写出已知,求证,分析后写出证明过程。证明后,教师强调经过证明正确的命题可作为定理。教师归纳,强调定理的条件和作用。同时强调文字命题的证明步骤。

  [设计意图]经历实践→猜想→证明→归纳的过程,培养学生的动手操作能力和观察能力,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而更利于学生的直观体验上升到理性思维。

  追问2 这个结论与角的平分线的性质在应用上有什么不同?

  这个结论可以判定角的平分线,而角的平分线的性。

  质可用来证明线段相等。

  (三)巩固练习,应用性质。

  让学生运用本节所学知识分步来解决课前所提问题。让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学。

  在教学的实际过程中,重视学生的亲身体验、自主探究、过程感悟。在教学中,给学生一段时间去体悟,给他们一个空间去创造,给他们一个舞台去表演;让他们动脑去思考,用眼睛去观察,用耳朵去聆听,用自己的嘴去描述,用自己的手去操作。这种探究超越知识范畴而扩展到情感、价值观领域,使课堂成为学生生命成长的乐园。为了让学生做到学以致用,在判定证明完后,我让学生回头来解决问题1,对于问题1的解决作了如下分解:在问题1中,在S 区建一个广告牌P,使它到两条公路的距离相等。

  (1) 这个广告牌P 应建于何处?这样的广告牌可建多少个?

  (2) 若这个广告牌P 离两条公路交叉处500 m(在图上标出它的位置,比例尺为1:20 000),这个广告牌应建于何处?

  (3)如图,要在S 区建一个广告牌P,使它到两 条公路和一条铁路的距离都相等。这个广告牌P 应建在何处?

  这样有梯次的设问为学生最终解决问题1作了很好的分解,学生独立解决这道路问题也就变得很简单了。同时在分解问题(3)时,有学生说作三角的平分线找交点,有学生反驳说作两条就可以了因为第三条角平分也一定过这个交点。此时老师及时提问任意三角形的两内角平分线的交点在第三个角的平分线上吗?那么我们来作下面的探究。

  (教师出示问题2:如图,点P是△ABC的两条角平分线BM, CN 的交点,点P 在∠BAC的平分线上吗?这说明三角形的三条角平分线有什么关系? 这样提出问题连惯性强,让学生的思维始终处于活跃和不断对知识的渴求探索中。

  (四)归纳小结,充实结构

  1、这节课你有哪些收获,还有什么困惑?

  2、通过本节课你了解了哪些思考问题的方法?

  教师让学生畅谈本节课的收获与体会。学生归纳、梳理交流本节课所获得的知识技能与情感体验。

  [设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力。

  五、布置作业

  作业,必做题:教材习题12.3第3、7题; 选做题:课时通上选做部分题。

  [设计意图]设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成。选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的。

  本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实。

【角平分线说课稿】相关文章:

角的平分线的说课稿06-12

《角的平分线的性质》说课稿12-05

角的平分线11-30

角平分线的课件03-19

角平分线课件03-19

角的平分线教案11-30

角的平分线的定义09-08

角平分线的性质09-17

角的平分线教案11-30