初中的数学说课稿

时间:2024-11-07 09:29:30 美云 说课稿 我要投稿

初中的数学说课稿(精选15篇)

  “说课”是教学改革中涌现出来的新生事物,是进行教学研究、教学交流和教学探讨的一种新的教学研究形式,一起来看看数学说课稿,仅供大家参考!

初中的数学说课稿(精选15篇)

  初中的数学说课稿 1

  一、教学目标

  1、了解二次根式的意义;

  2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3、掌握二次根式的性质和,并能灵活应用;

  4、通过二次根式的计算培养学生的逻辑思维能力;

  5、通过二次根式性质和的'介绍渗透对称性、规律性的数学美。

  二、教学重点和难点

  重点:

  (1)二次根的意义;

  (2)二次根式中字母的取值范围。

  难点:确定二次根式中字母的取值范围。

  三、教学方法

  启发式、讲练结合。

  四、教学过程

  (一)复习提问

  1、什么叫平方根、算术平方根?

  2、说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式。

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略。

  说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

  初中的数学说课稿 2

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2,试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?

  (2)对前面提出的问题的解答能作出什么猜想?

  让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题:

  (1)当AB=xm时,BC长等于多少m?

  (2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式。

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的`值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义。

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:略

  初中的数学说课稿 3

  一、教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、课堂教学过程设计

  (一)从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  例1 某数的3倍减2等于某数与4的和,求某数。

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3。

  答:某数为3。

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4。

  解之,得x=3。

  答:某数为3。

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

  (二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以x=50 000。

  答:原来有50 000千克面粉。

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:

  (1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿。

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的.情况,教师总结如下:

  (1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

  (3)根据相等关系,正确列出方程,即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案,这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

  例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨,解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5。

  其苹果数为3× 5+9=24。

  答:第一小组有5名同学,共摘苹果24个。

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

  (设第一小组共摘了x个苹果,则依题意,得)

  (三)课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

  3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

  (四)师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆。

  (五)作业

  1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

  初中的数学说课稿 4

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的'内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:(1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:练习册第93页1、2、3

  八、教学反思:

  1、教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

  初中的数学说课稿 5

  教学目的

  1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

  2、使学生能了解实数绝对值的意义。

  3、使学生能了解数轴上的点具有一一对应关系。

  4、由实数的分类,渗透数学分类的思想。

  5、由实数与数轴的一一对应,渗透数形结合的思想。

  教学分析

  重点:无理数及实数的概念。

  难点:有理数与无理数的区别,点与数的一一对应。

  教学过程

  一、复习

  1、什么叫有理数?

  2、有理数可以如何分类?

  (按定义分与按大小分。)

  二、新授

  1、无理数定义:无限不循环小数叫做无理数。

  判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

  2、实数的定义:有理数与无理数统称为实数。

  3、按课本中列表,将各数间的.联系介绍一下。

  除了按定义还能按大小写出列表。

  4、实数的相反数:

  5、实数的绝对值:

  6、实数的运算

  讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判断题:

  (1)任何实数的偶次幂是正实数。( )

  (2)在实数范围内,若| x|=|y|则x=y。( )

  (3)0是最小的实数。( )

  (4)0是绝对值最小的实数。( )

  解:略

  三、练习

  P148 练习:3、4、5、6。

  四、小结

  1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

  2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

  五、作业

  1、P150 习题A:3。

  2、基础训练:同步练习1。

  初中的数学说课稿 6

  教学目标:

  1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

  2、收集统计在生活中应用的例子,整理收集数据的方法。

  3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

  教学过程:

  一、课前预习,出示预习提纲:

  1、我们学习了哪几种统计图?

  2、这几种统计图各有什么特点?

  3、概率的知识有哪些?

  二、展示与交流

  (一)提出问题

  1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

  2、师:先独立列出几个你想调查的问题。(写在练习本上)

  3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的'3个问题。(小组汇报、交流、整理)

  4、接着全班汇报交流(师罗列在黑板上)

  师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

  (二)收集数据和整理数据

  1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

  2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

  (三)开展调查

  1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

  2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

  3、全班汇总、整理、归纳各小组数据。(板书)

  4、师:分析上面的数据,你能得到哪些信息?

  5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

  6、师:根据这些信息,你还能提出什么数学问题?

  (四)回顾统计活动

  1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

  师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

  2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

  指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

  3、结合生活中的例子说说收集数据有哪些方法?

  (1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

  的实例)来说说自己的方法。

  (2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

  4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

  初中的数学说课稿 7

  教学目标

  1.理解二元一次方程及二元一次方程的解的概念;

  2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

  3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

  4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

  教学重点、难点

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  教学过程

  1.情景导入:

  新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2。

  2.新课教学:

  引导学生观察方程80a+150b=902880与一元一次方程有异同?

  得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

  3.合作学习:

  给定方程x+2y=8,男同学给出y(x取绝对值小于10的`整数)的值,女同学马上给出对应的x的值;接下来男女同学互换,(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法,提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

  4.课堂练习:

  1)已知:5xm-2yn=4是二元一次方程,则m+n=;

  2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=

  5.课堂总结:

  (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

  (2)二元一次方程解的不定性和相关性;

  (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

  作业布置

  本章的课后的方程式巩固提高练习。

  初中的数学说课稿 8

  教学目标:

  1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

  2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

  3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

  教学难点:

  了解“两点确定一条直线”等事实,并应用它解决一些实际问题

  教 具:

  多媒体、棉线、三角板

  教学过程:

  情景创设:

  观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

  如何来描述我们所看到的现象?

  教学过程:

  1、 一段拉直的棉线可近似地看作线段

  师生画线段

  演示投影片1:

  ①将线段向一个方向无限延长,就形成了:

  学生画射线

  ②将线段向两个方向无限延长就形成了:

  学生画直线

  2、 讨论小组交流:

  ① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

  (强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

  ②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

  (鼓励学生用自己的语言描述它们各自的特点)

  3、 问题1:图中有几条线段?哪几条?

  “要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

  点的`记法: 用一个大写英文字母

  线段的记法:①用两个端点的字母来表示

  ②用一个小写英文字母表示

  自己想办法表示射线,让学生充分讨论,并比较如何表示合理

  射线的记法:

  用端点及射线上一点来表示,注意端点的字母写在前面

  直线的记法:

  ① 用直线上两个点来表示

  ② 用一个小写字母来表示

  强调大写字母与小写字母来表示它们时的区别

  (我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

  练习1:读句画图(如图示)

  (1) 连BC、AD

  (2) 画射线AD

  (3) 画直线AB、CD相交于E

  (4) 延长线段BC,反向延长线段DA相交与F

  (5) 连结AC、BD相交于O

  练习2:右图中,有哪几条线段、射线、直线

  4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

  学生通过画图,得出结论:过一点可以画无数条直线

  经过两点有且只有一条直线

  问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

  为什么?(学生通过操作,回答)

  小组讨论交流:

  你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

  适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

  5、 小结:

  ① 学生回忆今天这节课学过的内容

  进一步清晰线段、射线、直线的概念

  ② 强调线段、射线、直线表示方法的掌握

  6、 作业:①阅读“读一读” P121

  ②习题4的1、2、3.4作为思考题

  初中的数学说课稿 9

  一、教学目标:

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的.点到原点的距离。数a的绝对值记作|a|

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  用字母a表示数,则绝对值的代数意义可以表示为:

  指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

  3.例题精讲

  例1.求8,-8,-的绝对值。

  按教材方法讲解。

  例2.计算:|2.5|+|-3|-|-3|

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一个数的绝对值等于2,求这个数。

  解:∵|2|=2|-2|=2

  ∴这个数是2或-2

  五、巩固练习

  练习一:教材P641、2,P66习题2.4A组1、2

  练习二:

  1.绝对值小于4的整数是:

  2.绝对值最小的数是:

  3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

  六、归纳小结

  本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

  七、布置作业

  教材P66习题2.4A组3、4、5

  初中的数学说课稿 10

  一、说教材

  1、教材分析

  本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。

  2、学情分析

  在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。

  二、教学目标

  1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。

  2、过程与方法:通过类比有理数的运算,体会数式通性。

  3、情感态度与价值观

  把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。

  三、教学重难点

  本节重难点是合并同类项法则的探究过程。

  四、教学过程

  1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  ②合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的'指数不变。

  2、探究新知

  ①分析例2:⑴求多项式2x-5x+x+4x-3x-2的值,其中x=。

  ⑵求多项式3a+abc-c-3a+c的值,其中a=﹣1/6,b=2,c=﹣3.

  师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?

  解法1:把x=代入2x-5x+x+4x-3x-2得

  2×﹙﹚-5×+﹙﹚+4×-3×﹙﹚-2

  =2×-5×++4×-3×-2

  =-2.5++2--2

  =﹣2-

  =﹣2.5

  解法2:2x-5x+x+4x-3x-2

  =﹙2+1-3﹚x+﹙﹣5+4﹚x-2

  =﹣x-2

  当x=时,原式=﹣-2=﹣2.5

  教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。

  ⑵3a+abc-c-3a+c

  =﹙3-3﹚a+abc+﹙﹣+﹚c

  =abc

  当a=﹣1/6,b=2,c=﹣3时

  原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=1

  2、练一练:求下列各式的值

  ⑴3a+2b-5a-b,其中a=﹣2,b=1;

  ⑵3x-4x+7-3x+2x+1,其中x=﹣3

  3、分析P65的例3

  例3:1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?

  2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?

  学生:小组合作探究

  教师总结:1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。

  两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚

  2、把进货的数量记为正,售出的数量记为负

  进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚

  四、小结:

  熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。

  五、作业P70﹙4、5﹚

  初中的数学说课稿 11

  各位评委、各位老师,大家好!今天我说课的题目是:《代数式的值》。我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。

  一、教材分析

  (一)、教材内容的地位和作用

  《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

  (二)、教学目标

  根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

  知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

  情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

  (三)、教学重点、难点

  教学重点:代数式求值的书写格式。

  教学难点:代数式求值的书写格式,变式训练知识的运用。

  二、教法、学法分析

  本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的'时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

  三、教学程序设计

  板 书 设 计:

  代数式的值

  四、评价与反思

  新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

  教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

  无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

  以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。

  初中的数学说课稿 12

  一、说教材:

  1、本节课的主要内容:

  探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。

  2、地位作用:

  纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。

  3、教学目标:

  依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:

  (1)知识目标:

  a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。

  b、会动手和利用计算器计算“方差”“标准差”。

  (2)过程与方法目标:

  a、经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。

  b、通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)

  c、突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。

  d、在具体实例中体会样本估计总体的思想。

  (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

  4、重点与难点:重点:

  理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。

  难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:

  1、引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。

  2、比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

  3、练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。

  4、选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

  三、说学法:

  教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:

  (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的`数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。

  (2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。

  (3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。

  (4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。

  四、说教学程序:

  1、创设情境,导入新课:

  <1>、展示情景(链接奥运会中韩运动员设计的情景)。

  <2>、学生观察阅读分析(描述运动员射箭的平均水平)。

  <3>、分析思考寻求解决方案(观察表格数据求平均数)。

  <4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出本课课题——数据的波动)

  2、新课:

  (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)

  <1>、概念介绍:

  a、数据的离散程度(是相对于平均水平的偏离情况);

  b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);

  c、练习巩固计算极差;

  <2>、展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点——方差和标准差。

  <3>、引进概念

  a、给出“标准差”的概念(方差的算术平方根)。

  b、学生相互交流学习操作计算器计算方差和标准差。

  <4>、引导学生理解一组数据的极差、方差、标准差越小,这组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具体化)。

  <5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

  3、巩固练习:

  <1>、样本4、7、5、2、3、8、5、6的平均数是______,众数是_____,极差是____,方差是________,标准差是______。(通过这组练习强化概念和计算方法的运用)

  <2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

  4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

  5、布置作业:P—199(1)(2)(3—选作题):

  五、说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。

  初中的数学说课稿 13

  一、教材分析

  ▲教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  ▲学情分析

  ①说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  ②说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  ③说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  ▲教材重难点

  重点:幂的乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  ㈠知识与技能目标

  ⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的'发生过程。

  ⑵掌握幂乘方法则。

  ⑶会运用法则进行有关计算。

  ㈡过程与方法目标

  ⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  ㈢情感、态度与价值观

  体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  四、教材处理

  ⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  ⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  ⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  ⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  五、教学过程

  学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

  ①创设情境,引入课题。

  ②自主探索,展示新知。

  ③应用新知,解决问题。

  ④反馈练习,拓展思维。

  ⑤学有所思,感悟收获。

  ⑥布置作业,学以致用。

  1、创设情境,引入课题

  《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

  问题1:同底数幂的乘法法则是怎么样的?

  问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

  设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

  2、自主探索,展示新知

  (1)自主探索

  出示幻灯片试一试

  请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n

  (多媒体演示时,先出现①②,再出现③,最后出现④)

  设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

  (2)合作交流,展示成果

  计算:(am)n

  设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

  3、应用新知,解决问题

  (1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

  ①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5

  ⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4

  设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

  (3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

  (2)出示例2:计算下列各式

  ①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4

  ③(-2)2(-23)4 ④100010n(103)2

  设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

  ②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

  (3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

  设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

  4、反馈练习,拓展思维

  (1)出示改错题(多媒体演示)

  下列各题计算正确吗?

  ①(x2)3+x5=x5+x5=2x5

  ②x3x6+(x3)3=x9+x9=x18

  ③x2(x4)2+x5x2=x10+x10=x20

  设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

  (2)设计一个探究活动(多媒体演示)

  魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

  设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

  5、学有所思,感悟收获

  设计三个问题:

  ①通过本节课学习,你学会了哪些知识?

  ②通过本节课学习,你最深刻的体验是什么?

  ③通过本节课学习,你心里还存在什么疑惑?

  设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

  6、布置作业,学以致用

  必做题:作业本

  选做题:①已知1624326=22x-1,(102)y=1020求x+y.

  ②已知:比较2100与375的大小。

  设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

  六、板书设计幂的乘方幂的乘方法则的

  推导过程同底幂的乘法法则

  幂的乘方法则范例板书

  学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

  七、设计说明

  1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。

  2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!

  初中的数学说课稿 14

  一、说数学课程的总体目标

  通过数学学习希望学生能达到以下四方面的目标:

  (一)知识与技能

  ●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。

  ●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。

  ●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。

  (二)数学思考

  建立初步的数感和符号感,发展抽象思维。丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。经历运用数据描述信息、作出推断的过程,发展统计观念。发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。

  (三)解决问题

  能综和运用所学的知识和技能解决问题,发展应用意识。形成解决问题的一些基本策略,发展实践能力与创新精神。

  (四)情感与态度

  能积极参与数学学习活动,对数学有好奇心与求知欲。体验数学活动充满着探索性和创造性;感受数学的严谨性以及数学结论的确定性。形成实事求是的态度

  以上四个方面的目标是一个密切联系的有机整体,其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。

  二、说内容标准

  初中数学分为“数与代数“ “空间与图形“ “统计与概率“ “实践与综合应用“四个领域。

  “数与代数“的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,在七年级下册中具体体现在:第六章平面直角坐标系,第八章二元一次方程组,第九章不等式和不等式组,这些内容使学生认识到,现实中的问题可以构建有效的数学模型,解决简单的问题。从而体现“实践—理论—实践”的认识过程。

  “空间与图形“的内容是人们更好地认识和描述生活空间并进行交流的重要工具。在七年级下册中有:第五章相交线平行线,第七章三角形,这些知识的学习使学生获得初步的识图、作图等技能,发展初步的合情推理能力。

  “统计与概率“主要研究现实生活中的数据和客观世界中的随机现象,来帮助人们作出合理的推断和预测。在七年级下册中体现在第十章:数据的收集、整理与描述,这是初中阶段学生对统计学的初步接触,也是为八年级下册的第20章“数据的分析”做铺垫。

  “实践与综合应用“:课程标准将它作为与“数与代数”“空间与图形”“统计与概率”并列的内容,足见标准对这一领域的重视。在整个初中阶段,“实践与综合应用”不作为独立的一块内容,而是同与其最接近的知识内容相结合,教科书在每一册都安排了1~2个“课题学习”,每一章都安排了2~4“数学活动”。这样处理,使得“实践与综合应用”以多种形式分散编排,化整为零,经常化和生活化。

  三、说教材的特点和编排意图

  教材在编排上

  ⑴增加了丰富的问题情境。

  本册教材在内容素材的选取上力求贴近学生的生活实际和社会现实,并注意把所学到的知识应用到解决实际问题中去。例如在教科书的七年级下上册“二元一次方程组”一章,实际问题情境贯穿于始终,对方程解法的讨论也是在解决实际问题的过程中进行的。全章涉及了物理问题、几何问题、经济问题、农业问题、生产效率问题、社会问题等许多实际问题。

  还有学习“数据的收集、整理与描述”,就离不开大量真实的素材,教科书中的素材也涉及到了学生生活的各个方面,如学生的身高、体重、视力、脉搏,、收集废电池、丢弃塑料袋等环境保护问题,国内生产总值、平均工资、雨伞销售等经济问题等等。

  ⑵阶梯式呈现知识内容。

  教科书在每一章节中设置了“思考”“探究”

  “归纳”等栏目,让学生从观察身边的事物入手,加深学生对所学内容的印象;通过讨论互相启发,促进数学思考,扩大和加深对问题的认识;再通过探究、讨论归纳结论,体会特殊到一般的过程。以“对顶角相等”为例,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,通过学生的充分讨论,探究发现对顶角相等这个结论,然后再对它进行说理。

  ⑶循序渐进地进行推理训练。

  对于推理能力的培养,按照“说点儿理”“说理”“简单推理”“符号表示推理”等不同层次分阶段逐步加深地安排,教科书从七年级上册开始渗透推理的初步训练,到七年级下册结合三角形内角和定理正式出现证明,在以后各册中,对于推理证明的要求一以贯之,逐步培养学生的逻辑思维能力。

  ⑷分层次的练习、习题。

  练习题的安排,不是简单的课时划分,而是根据内容的需要来安排。对于习题,改变了以往根据题目难度分为A、B组的方法,而是按照习题功能设置了“复习巩固”“综合运用”“拓广探索”三个层次。“复习巩固”层次的习题主要是让学生复习本节(章)所学的基础知识和基本技能;“综合运用”层次的习题是要学生综合运用本节(章)所学知识去解决问题;在此基础上,“拓广探索”层次的习题综合性、实践性更强,为学生提供了充分发展的空间,希望所有学生都能上手,不同学生得到不同的发展。

  ⑸丰富多彩的“数学活动”。

  教科书在每一章都安排了2~4个具有综合性、探究性、开放性的“数学活动”,通过这些“数学活动”,加深对知识的理解,增强动手能力、思考能力、解决问题的能力,培养合作精神。

  四、教材的知识点和能力

  这册教材包括:第五章:相交线和平行线;第六章:平面直角坐标系;第七章:三角形;第八章:二元一次方程组;第九章:一元一次不等式和不等式组;第十章:数据的收集、整理与描述。

  (一)知识点

  相交线和平行线。相交线主要研究垂线的.性质,平行线研究平行线的判定和性质以及平移。本章的重点是垂线的性质与平行线的判断和性质。逐步深入地让学生学会说理是本章的难点。

  平面直角坐标系。主要内容包括平面直角坐标系的有关概念,点与坐标的对应关系,用坐标表示地理位置和用坐标表示平移等知识。本章只要求学生会建立适当的平面直角坐标系,建立点与有序数对的一一对应关系,让学生初步感受树形结合的思想。

  三角形。包括“三角形的有关概念”、“与三角形有关的线段”、与三角形有关的角“、多边形及其内角和”、“镶嵌”。通过生活中的实例,认识并了解三角形的稳定性,通过探究得出三角形的内角和定理。在教学过程中要引导学生认真分析,并在添加辅助线上加以指导,使学生理解和掌握证明方法。

  二元一次方程组。主要包括二元一次方程(组)的概念、解法和应用。以方程组为工具解决实际问题是本章的重点和难点。注意提高分析问题中数量关系能力。

  不等式和不等式组、包括一元一次不等式(组)的概念、解法和应用,并能把解集在数轴上表示出来。以不等式(组)为工具分析问题,解决问题是重点。

  数据的收集、整理与描述。了解全面调查与抽样调查。通过收集数据、整理数据、描述数据、分析数据,从而得出结论。

  (二)能力点

  1、通过数与代数的学习,提高学生的运算能力,使学生会综合运用所学知识解决简单的实际问题。

  2、通过空间与图形的学习,使学生会进行简单的推理和说理,养成言之有据的习惯

  3、通过学习学会与人合作,并能与他人交流思维的过程和结果

  五、教学建议

  1、注重联系实际,尽可能从学生感兴趣的话题出发,在恰当的问题情景中进行教学。

  2、注意直观操作与说理的结合,逐步培养学生有条理的思考和表达。例如,对已获得的“三角形内角和为180度“这个结论,教科书上又采取了直观和说理方式来使学生重新认识,教师引导学生在直观拼摆的基础上意识到两个处理方式的不同,即此处是在进行推理。

  3、注重分析思路,让学生学会思考问题

  4、培养学生良好的学习习惯

  5、关注学生的学习兴趣和参与程度

  六、评价建议

  评价的目的是全面了解学生的学习状况,促进学生的进一步学习。对学生数学学习的评价

  首先要关注对学生学习过程的评价,包括学生参与活动的程度,行为表现,和在学习过程中表现出来数学思维策略,水平和思维品质。

  第二、关注对学生解决问题能力的评价,包括掌握知识的能力、与人合作的能力、运用知识的能力、学习数学的自信心等等。

  第三、采用教师评价、学生自评、学生互评的方式,从不同角度对学生进行评价。

  第四、要采用多样化的评价方式,准确了解学生的数学学习状况

  七、课程资源的开发和利用

  数学课程资源的开发和利用,是保证数学新课程实施的一个重要条件。

  1、延伸主要的课程资源——教材,让教材发挥更大的作用。第一,用活教材提供的课程资源,第二、挖掘教材隐含的课程资源,第三、置换教材生疏的课程资源。

  2、善于利用身边熟悉的课程资源。第一、选择学生现实生活中的事件或现象作为教学资源,第二、选择学生自身的生长发育情况和教学现象素材做为教学资源。

  3、合理开发学生生活中的课程资源。第一、运用生活中真实、生动的素材作为课程资源(如有序数对用排座位说明,点与坐标可以把某个学生的位置当做坐标原点,其他学生找到自己所在位置的坐标),第二、利用生活中常见的材料作为课程资源。

  4、及时捕捉互动生成的课程资源。第一、善于捕捉并选择有价值的信息做为有用的教学资源。第二、开发和利用学生的课堂表现和错误资源。

  总之,作为教师,我们要用“教材教”,而不是“教教材”;作为教师,我们要成为教材的主人,而不应成为教材的奴隶;作为教师,我们应因地制宜,以多种途径、多种方式、多种渠道开发与利用丰富的课程资源,共同促进学生科学素养的提高和发展。

  初中的数学说课稿 15

各位评委:

  大家好!我是 号说课者,今天我说课的题目是 ,所选用的教材为北师大版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

  一、教材的地位和作用

  本节教材是初中数学 年级第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  二、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  三、 教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:

  1. (了解、理解、熟记、初步掌握、会运用 等);

  2. 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

  3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为:

  为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。

  四、 教法和学法分析

  1. 教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的`自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。

  2. 学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。

  下面我具体来谈谈这堂课的教学过程。

  五、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习旧知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1例2,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。

  六、 板书设计

  我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。 我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。

  七、结束语

  各位领导、老师们,本节课我根据 年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。

  我的说课完毕,谢谢!

【初中的数学说课稿】相关文章:

说课稿数学说课稿初中11-28

初中数学说课稿05-11

初中数学获奖说课稿01-31

数学说课稿初中06-07

初中数学说课稿06-24

初中数学说课稿11-24

初中数学《圆》说课稿03-19

初中数学说课稿03-23

初中数学《数轴》说课稿01-22

初中的数学分式说课稿10-14