六年级应用题难题答案
题一
有一项工程,由三个工程队每天轮流做。原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天,已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?
答案:
根据条件可以作如下分析:有两种情况分析。
第一种情况:
①甲乙丙;甲乙丙;……;甲乙丙;甲
②乙丙甲;乙丙甲;……;乙丙甲;乙丙(1/2)
③丙甲乙;丙甲乙;……;丙甲乙;丙甲(1/3)
三个工程队的工作效率的关系是:
甲=乙+丙×1/2=丙+甲×1/3
可以得到:丙=乙=甲×2/3,所以不符合条件。
第二种情况:
①甲乙丙;甲乙丙;……;甲乙丙;甲乙丙
②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)
③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)
可以得到:丙=甲×1/2,乙=甲×1/2÷2/3=甲×3/4
所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。
题二:
通讯员以每小时6千米的'速度到某地去,返回时因绕另一条路而多走3千米,回程时他每小时行7千米,仍比去时多用10分钟,问往返各是多少千米?
答案
3千米需要的时间是3÷7=3/7小时,用3/7-10/60=11/42小时的时间相当于去的时候的1-6/7=1/7,所以,去时的时间是11/42÷1/7=11/6小时。所以去的时候的路程是11/6×6=11千米,返回就是11+3=14千米。
题三:
两个集镇之间的公路除了上坡就是下坡,没有水平路段,客车上坡的速度保持为15千米,下坡的速度保持为每小时30千米,现知道客车在两地之间往返一次,需在路上行驶4个小时,求两地之间的距离。
答案:
去时的下坡是返回的上坡,去时的上坡是返回上的下坡。所以所有的上坡路和下坡路相等。上坡和下坡的速度比是15:30=1:2。下坡用去的时间是4÷(1+2)=4/3小时,所以上坡路长4/3×30=40千米。故两地之间的距离是40千米。
设:两地之间的距离为x;
在两地之间往返一次,上坡的路程等于下坡的路程等于x。
x/15+x/30=4
x(1/15+1/30)=4
x/10=4
x=40(千米)
两地之间的距离为40千米
【六年级应用题难题答案】相关文章:
《父亲的难题》阅读答案08-09
父亲的难题阅读答案11-25
老爸的难题阅读答案03-26
父亲的难题- 阅读答案04-11
父亲的难题阅读及答案06-13
生活的难题的阅读答案02-05
老爸的难题阅读答案10-10
《父亲的难题》阅读答案09-19
父亲的难题 阅读答案09-25