高三数学概率训练题及解析

时间:2021-05-22 09:12:57 试题 我要投稿

高三数学概率训练题及解析

  水滴石穿,绳锯木断。备考也需要一点点积累才能到达好的效果。小编为您提供高三数学概率训练题及解析,通过做题,能够巩固所学知识并灵活运用,考试时会更得心应手。快来练习吧。

高三数学概率训练题及解析

  一、选择题:本大题共12小题,每小题5分,共60分。

  1、从装有5只红球,5只白球的袋中任意取出3只球,有事件:

  ①“取出2只红球和1只白球”与“取出1只红球和2只白球”;

  ②“取出2只红球和1只白球”与“取出3只红球”;

  ③“取出3只红球”与“取出3只球中至少有1只白球”;

  ④“取出3只红球”与“取出3只白球”

  其中是对立事件的有()

  A、①② B、②③

  C、③④ D、③

  D解析:从袋中任取3只球,可能取到的情况有:“3只红球”,“2只红球1只白球”,“1只红球,2只白球”,“3只白球”,由此可知①、②、④中的两个事件都不是对立事件、对于③,“取出3只球中至少有一只白球”包含“2只红球1只白球”,“1只红球2只白球”,“3只白球”三种情况,与“取出3只红球”是对立事件。

  2、取一根长度为4 m的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 m的概率是()

  A.14 B.13

  C.12 D.23

  C解析:把绳子4等分,当剪断点位于中间两部分时,两段绳子都不少于1 m,故所求概率为P=24=12.

  3、甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲 、乙两人下一盘棋,你认为最为可能出现的情况是()

  A、甲获胜 B、乙获胜

  C、甲、乙下成和棋 D、无法得出

  C解析:两人下成和棋的概率为50%,乙胜的概率为20%,故甲、乙两人下一盘棋,最有可能出现的情况是 下成和棋.

  4、如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a2的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()

  A、1- B.4

  C、1- D、与a的取值有关

  A 解析:几何概型,P=a2-a22a2=1-4,故选A.

  5、从1,2,3,4这四个数中,不重复地任意取两个种,两个数一奇一偶的概率是()

  A.16 B.25

  C.13 D.23

  D 解析:基本事件总数为6,两个数一奇一偶的情况有4种,故所求概率P=46=23.

  6、从含有4个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是()

  A.310 B.112

  C.4564 D.38

  D解析:4个元素的集合共16个子集,其中含有两个元素的'子集有6个,故所求概率为P=616=38.

  7 、某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是()

  A、一定不会淋雨 B、淋雨的可能性为34

  C、淋雨的可能性为12 D、淋雨的可能性为14

  D解析:基本事件有“下雨帐篷到”、“不下雨帐篷到”、“下雨帐篷未到”、“不下雨帐篷未到”4种情况,而只有“下雨帐篷未到”时会淋雨,故淋雨的可能性为14.

  8、将一颗骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()

  A.19 B.112

  C.115 D.118

  D解析:基本事件总数为216,点数构成等差数列包含的基本事件有(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,2,1),(3,4,5),(4,3,2),(4,5,6),(5,4,3),(5,3,1),(6,5,4),(6,4,2)共12个,故求概率为P=12216=118.

  9、设集合A={1,2},B={1,2,3},分别从集合A和集合B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(25,nN),若事件Cn的概率最大,则N的所有可能值为()

  A、3 B、4

  C、2和5 D、3和4

  D解析:点P(a,b)的个数共有23=6个,落在直线x+y=2上的概率P(C2)=16;落在直线x+y=3上的概率P(C3)=26;落在直线x+y=4上的概率P(C4)=26;落在直线x+y=5上的概率P(C5)=16,故选D.

  10、连掷两次骰子得到的点数分别为m,n,记向量a=(m,n)与向量b=(1,-1)的夹角为,则0,2的概率是()

  A.512 B.12

  C.712 D.56

  C 解析:基本事件总数为36,由cos=ab|a||b|0得a0,即m-n0,包含的基本事件有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21个,故所求概率为P=2136=712.

  11、在一张打方格的纸上投一枚直径为1的硬币,方格的边长(方格边长设为a)要多少才能使得硬币与方格线不相交的概率小于1% ()

  A、a>910 B、a>109

  C、1<a<109 D、0<a<910

  C解析:硬币与方格线不相交,则a>1时,才可能发生,在每一个方格内,当硬币的圆心落在边长为a-1,中心与方格的中心重合的小正方形内时,硬币与方格线不相交,故硬币与方格线不相交的概率P=(a-1)2a2.,由(a-1)2a2<1%,得1<a<109.

  12、集合A={(x,y)|x-y-10,x+y-10,xN},集合B={(x,y)|y-x+5,xN},先后掷两颗骰子,设掷第一颗骰子得点数记作a,掷第二颗骰子得数记作b,则(a,b)B的概率等于 ()

  A.14 B.29

  C.736 D.536

  B解析:根据二元一次不等式组表示的平面区域,可知AB对应如图所示的阴影部分的区域中的整数点、其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2)共14个、现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2)、所以满足(a,b)B的概率为836=29

  二、填空题:本大题共4个小题,每小题5分,共20分。

  13、若实数x,y满足|x|2,|y|1,则任取其中x,y,使x2+y21的概率为__________。

  解析:点(x,y)在由直线x=2和y=1围成的矩形上或其内部,使x2+y21的点(x,y)在以原点为圆心,以1为半径的圆上或其内部,故所求概率为P=2=8.

  答案:8

  14、从所有三位二进制数中随机抽取一个数,则这个数化为十进制数后比5大的概率是________。

  解析:三位二进制数共有4个,分别111(2), 110(2),101(2),100(2),其中111(2)与110(2)化为十进制数后比5大,故所求概率为P=24=12.

  答案:12

  15、把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程组mx+ny=3,2x+3y=2,只有一组解的概率是__________。

  1718 解析:由题意,当m2n3,即3m2n时,方程组只有一解、基本事件总数为36,满足3m=2n的基本事件有(2,3),(4,6)共两个,故满足3m2n的基本事件数为34个,故所求概率为P=3436=1718.

  16、在圆(x-2)2+(y-2)2=8内有一平面区域E:x-40,y0,mx-y0),点P是圆内的任意一点,而且出现任何一个点是等可能的、若使点P落在平面区域E内的概率最大,则m=__________.

  解析:如图所示,当m=0时,平面区域E的面积最大,则点P落在平面区域E内的概率最大。

  三、解答题:本大题共6小题,共70分。

  17、(10分)某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿 命(单位:小时)进行了统计,统计结果如下表所示

  分组 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+)

  频数 48 121 208 223 193 165 42

  频率[]

  (1)将各组的频率填入表中;

  (2)根据上述统计结果,计算灯管使用寿命不足1 500小时的频率;

  (3)该公司某办公室新安装了这种型号的灯管15支,若将上述频率作为概率,估计经过1 500小时约需换几支灯管、

  解析:

  分组 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+)

  频数 48 121 208 223 193 165 42

  频率 0.048 0.121 0.208 0.223 0.193 0.165 0.042

  (2)由(1)可得0.048+0.121+0.208+0.223=0.6,

  所以,灯管使用寿命不足1 500小时的频率是0.6.

  (3)由(2)只,灯管使用寿命不足1 500小时的概率为0.6.

  150.6=9,故经过1 500小时约需换9支灯管、

  18、(12分)袋中有大小、形状相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球。

  (1)一共有多少种不同的结果?请列出所有可能的结果;

  (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

  解析:(1)一共有8种不同的结果,列举如下:

  (红,红,红)、(红,红,黑)、(红,黑,红)、(红,黑,黑)、

  (黑、红,红)、(黑,红,黑)、(黑,黑,红)、(黑、黑、黑)、

  (2)记“3次摸球所得总分为5”为事件A,

  事件A包含的基本事件为:

  (红,红,黑)、(红,黑,红)、(黑,红,红)

  事件A包含的基本事件数为3.

  由(1)可知,基本事件总数为8,

  所以事件A的概率为P(A)=38.

  19、(12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.设复数z=a+bi.

  (1)求事件“z-3i为实数”的概率;

  (2)求事件“复数z在复平面内的对应点(a,b)满足(a-2)2+b29”的概率。

  解析:(1)z-3i为实数,

  即a+bi-3i=a+(b-3)i为实数,b=3.

  又b可取1,2,3,4,5,6,故出现b=3的概率为16.

  即事件“z-3i为实数”的概率为16.

  (2)由已知,b的值只能取1,2,3.

  当b=1时,(a-2)28,即a可取1,2,3,4;

  当b=2时,(a-2)25,即a可取1,2,3,4;

  当b=3时,(a-2)20,即a可取2.

  综上可知,共有9种情况可使事件成立。

  又a,b的取值情况共有36种,

  所以事件“点(a,b)满足(a-2 )2+b29”的概率为14.

  20、(12分)汶川地震发生后,某市根据上级要求,要从本市人民医院报名参加救援的护理专家、外科专家、心理治疗专家8名志愿者中,各抽调1名专家组成一个医疗小组与省专家组一起赴汶川进行医疗求助,其中A1,A2,A3是护理专家,B1,B2,B3是外科专家,C1,C2是心理治疗专家。

  (1)求A1恰被选中的概率;

  (2)求B1和C1不全被选中的概率。

  解析:(1)从8名志愿者中选出护理专家、外科专家、心理治疗专家各1名,其一切可能的结果为:

  (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)、共有18个基本事件、

  用M表示“A1恰被选中 ”这一事件,则

  M包括(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)、共有6个基本事件、

  所以P(M)=618=13.

  (2)用N表示“B1和C1不全被选中”这一事件,则 其对立事件N表示“B1和C1全被选中”这一事件,

  由N包括(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),共有3个基本事件,

  所以P(N)=318=16,

  由对立事件的概率公式得P(N)=1-P(N)=1-16=56.

  21、(12分)设关于x的一元二次方程x2+2ax+b2=0.

  (1)若a是从-4,-3,-2,-1四个数中任取的一个数,b是从1,2,3三个数中任取的一个数,求上述方程有实根的概率;

  (2)若a是从区间[-4,-1]任取的一个数,b是从区间[1,3]任取的一个数,求上述方程有实根的概率、

  解析:设事件A为“方程x2+2ax+b2=0有实根”、

  当a<0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a+b0.

  (1)基本事件共12个:(-4,1),(-4,2),(-4,3),

  (-3,1),(-3,2),(-3,3),(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3)、

  其中第一个数表示a的取值,第二个数表示b的取值、事件A中包含9个基本事件,事件A发生的概率为

  P(A)=912=34.

  (2)试验的全部结果所构成的区域为

  {(a,b)|-4-1,13},构成事件A的区域为{(a,b)|-4-1,13,a+b0},

  所求概率为这两区域面积的比。

  所以所求的概率P=32-122232=23.

  22、(12分)某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人) 。

  (1)共有多少种安排方法?

  (2)其中甲、乙两人都被安排的概率是多少?

  (3)甲、乙两人中至少有一人被安排的概率是多少?

  解析:(1)安排情况如下:

  甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙、故共有12种安排方法、

  (2)甲、乙两人都被安排的情况包括:“甲乙”,“乙甲”两种,故甲、乙两人都被安排(记为事件A)的概率为

  P(A)=212=16.

  (3)方法一:“甲、乙两人中至少有一人被安排”与“甲、乙两人都不被安排”这两个事件是对立事件,∵甲、乙两人都不被安排的情交包括:“丙丁”,“丁丙”两种,则“甲、乙两人都不被安排的概率为212=16”

  甲、乙两人中至少有一人被安排(记为事件B)的概率P(B)=1-16=56.

  方法二:甲、乙两人中至少有一人被安排的情况包括:“甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙”共10种,甲、乙两人中至少有一人被安排(记为事件B)的概率P(B)=1012=56.

【高三数学概率训练题及解析】相关文章:

《题柳》温庭筠 阅读及解析11-07

观沧海解析及阅读题09-18

忽略阅读训练题及答案12-10

《老山界》阅读训练题及答案12-26

《天窗》阅读理解训练题及答案08-25

《范仲淹》的阅读训练题及答案11-13

沁园春雪阅读训练题及答案11-15

《望岳》阅读训练题及答案11-17

《题西林壁》阅读训练及答案11-15

梁实秋《鸟》阅读训练题及答案11-04