高中数学的说课稿

2021-12-07 18:18:59 高中数学的说课稿

  一、什么是说课稿

  首先必须明确什么叫说课,所谓说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。

  二、高中数学的说课稿(通用20篇)

  作为一位无私奉献的人民教师,常常需要准备说课稿,说课稿有助于提高教师的语言表达能力。那么写说课稿需要注意哪些问题呢?以下是小编收集整理的高中数学的说课稿(通用20篇),欢迎阅读与收藏。

  高中数学的说课稿1

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2、1、3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题、

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质、通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题、通过上述活动,加深对函数本质的认识、函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础、此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一、从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法、

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力、

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质、

  4、重点与难点

  教学重点:

  (1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性、

  教学难点:

  (1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性、

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性、

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决、

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用、具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达、

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性、

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力、

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃、

  高中数学的说课稿2

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

  难点:在可行域内,用图解法准确求得线性规划问题的最优解。

  二、目标分析:

  在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的最优解。

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:

  1、创设情境,提出问题;

  2、分析问题,形成概念;

  3、反思过程,提炼方法;

  4、变式演练,深入探究;

  5、运用新知,解决问题;

  6、归纳总结,巩固提高。

  高中数学的说课稿3

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。

  高中数学的说课稿4

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

  高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

  (二)过程与方法

  经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

  (三)情感态度价值观

  经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

  (一)教学重点

  由正弦函数的图象得到正弦函数的性质。

  (二)教学难点

  正弦函数的周期性和单调性。

  五、说教法和学法

  此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。

  (一)新课导入

  首先是导入环节,在这一环节中我将采用复习的导入方法。

  我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

  这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

  (二)新知探索

  接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

  让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

  学生一边看投影,一边思考如下问题:

  (1)正弦函数的定义域是什么

  (2)正弦函数的值域是什么

  (3)正弦函数的最值情景如何

  (4)正弦函数的周期

  (5)正弦函数的奇偶性

  (6)正弦函数的递增区间

  给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

  1、定义域:y=sinx定义域为R

  2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]

  3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。

  4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

  5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

  6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

  在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

  (三)课堂练习

  第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

  经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的进取主动的探索中显得更有味道。

  (四)小结作业

  最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

  在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

  经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

  七、说板书设计

  我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:

  (略)

  高中数学的说课稿5

  一、教材分析

  教材的地位和作用

  期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

  教学重点与难点

  重点:离散型随机变量期望的概念及其实际含义。

  难点:离散型随机变量期望的实际应用。

  [理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

  二、教学目标

  [知识与技能目标]

  通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

  会计算简单的离散型随机变量的期望,并解决一些实际问题。

  [过程与方法目标]

  经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

  通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

  [情感与态度目标]

  通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

  三、教法选择

  引导发现法

  四、学法指导

  “授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

  五、教学的基本流程设计

  高中数学的说课稿6

  1、教材分析

  1-1教学内容及包含的知识点

  (1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容

  (2)包含知识点:点到直线的距离公式和两平行线的距离公式

  1-2教材所处地位、作用和前后联系

  本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

  可见,本课有承前启后的作用。

  1-3教学大纲要求

  掌握点到直线的距离公式

  1-4高考大纲要求及在高考中的显示形式

  掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

  1-5教学目标及确定依据

  教学目标

  (1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

  (2)培养学生探究性思维方法和由特殊到一般的研究能力。

  (3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

  (4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

  确定依据:

  中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(2002年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(2004年)

  1-6教学重点、难点、关键

  (1)重点:点到直线的距离公式

  确定依据:由本节在教材中的地位确定

  (2)难点:点到直线的距离公式的推导

  确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

  分析“尝试性题组”解题思路可突破难点

  (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

  2、教法

  2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

  确定依据:

  (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

  (2)事物之间相互联系,相互转化的辩证法思想。

  2-2教具:多媒体和黑板等传统教具

  3、学法

  3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

  一句话:还课堂以生命力,还学生以活力。

  3-2学情:

  (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

  (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

  (3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

  3-3学具:直尺、三角板

  3、教学程序

  时,此时又怎样求点A到直线

  的距离呢?

  生: 定性回答

  点明课题,使学生明确学习目标。

  创设“不愤不启,不悱不发”的学习情景。

  练习

  比较

  发现

  归纳

  讨论

  的距离为d

  (1) A(2,4),

  :x = 3, d=_____

  (2) A(2,4),

  :y = 3,d=_____

  (3) A(2,4),

  :x – y = 0,d=_____

  尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。

  请三个同学上黑板板演

  师: 请这三位同学分别说说自己的解题思路。

  生: 回答

  教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。

  视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。

  说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)

  师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线:Ax+By+C=0(A,B≠0)的距离又怎样求?

  教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?

  生:方案一:根据定义

  方案二:根据等积法

  设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。

  师生一起进行比较,锁定方案二进行推证。

  “师生共作”体现新型师生观,且//时,又怎样求这两线的距离?

  生:计算得线线距离公式

  师:板书点到直线的距离公式,两平行线间距离公式

  “没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。

  反思小结

  经验共享

  (六 分 钟)

  师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?

  生: 讨论,回答。

  对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。

  共同进步,各取所长。

  练习

  (五 分 钟)

  P53 练习 1, 2,3

  熟练的用公式来求点线距离和线线距离。

  再度延伸

  (一 分 钟)

  探索其他推导方法

  “带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。

  4、教学评价

  学生完成反思性学习报告,书写要求:

  (1) 整理知识结构

  (2) 总结所学到的基本知识,技能和数学思想方法

  (3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因

  (4) 谈谈你对老师教法的建议和要求。

  作用:

  (1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

  (2) 报告的写作本身就是一种创造性活动。

  (3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

  5、板书设计

  (略)

  6、教学的反思总结

  心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

  高中数学的说课稿7

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象。

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

  (3)元素:集合中每个对象叫做这个集合的元素。

  集合通常用大写的拉丁字母表示,如A、B、C元素通常用小写的拉丁字母表示,如a、b、c。

  1、思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写。(举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。

  (2)互异性:集合中的元素一定是不同的。

  (3)无序性:集合中的元素没有固定的顺序。

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作NX或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作NX或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成ZX

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1、(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2、(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

  高中数学的说课稿8

  一、说教材

  1、从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

  2、从学生认知角度看

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  3、学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

  4、重点、难点

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法和公式的灵活运用。

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

  二、说目标

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

  三、说过程

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1、创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊,为什么呢?

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性、故事内容紧扣本节课的主题与重点。

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和这时我对他们的这种思路给予肯定。

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。

  2、师生互动,探究问题

  在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

  3、类比联想,解决问题

  这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

  对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

  4、讨论交流,延伸拓展

  高中数学的说课稿9

  一、说设计理念

  《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

  基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

  二、教材分析:

  (一)教材的地位和作用

  有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

  (二)教学目标

  1、联系生活情境了解扇形统计图的特点和作用

  2、能读懂扇形统计图,从中获取有效的信息。

  3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

  (三)教学重点:

  1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

  2、认识折线统计图,了解折线统计图的特点。

  (四)教学难点:

  1、能从扇形统计图中获得有用信息,并做出合理推断。

  2、能根据统计图和数据进行数据变化趋势的分析。

  二、学情分析

  本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

  三、设计理念和教法分析

  1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

  2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

  四、说学法

  《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  五、说教学程序

  本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

  六、说教学过程

  (一)复习引新

  1、复习旧知

  提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

  2、引入新课

  (二)自主探索,学习新知

  新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

  第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断

  三、课堂总结

  四、布置作业。

  五、板书设计:

  高中数学的说课稿10

  各位评委、各位老师:大家好!

  我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

  一、教材内容分析:

  1、本节课内容在整个教材中的地位和作用。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

  2、教学目标定位。

  根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

  3、教学重点、难点确定。

  本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

  二、教法学法分析:

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

  三、教学过程分析:

  1、创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以2004年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

  2、探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

  3、启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。

  4、训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

  5、延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

  四、课堂意外预案:

  新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案"。

  1、学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

  2、根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

  高中数学的说课稿11

  说教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  说教学重点:

  等差数列前n项和的公式。

  说教学难点:

  等差数列前n项和的公式的灵活运用。

  说教学方法

  启发、讨论、引导式。

  教具:

  现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10。

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+。。。。。。+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可写成

  Sn=an+an—1+。。。。。。a2+a1

  两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

  (1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

  (3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  请同学们先完成(1)—(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

  (3)2+4+6+。。。。。。+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

  高中数学的说课稿12

  各位评委,老师们:大家好!

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一说教材

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二说教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三说教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段———提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行、长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等、平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由、

  ①向量与是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形的充要条件是=;

  ⑤模为0是一个向量方向不确定的充要条件;

  ⑥共线的向量,若起点不同,则终点一定不同、

  [练习2]下列命题正确的是( )

  A、a与b共线,b与c共线,则a与c也共线

  B、任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

  C、向量a与b不共线,则a与b都是非零向量

  D、有相同起点的两个非零向量不平行

  Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

  在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

  例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

  具体教学安排如下:

  (1)分析解决问题

  先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

  (2)归纳解题方法

  主要引导学生归纳以下两个问题:

  ①零向量的方向是任意的,它只与零向量相等;

  ②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

  Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

  本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

  具体的教学安排如下:

  (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

  在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

  类比,数形结合,等价转化等进行强调。

  (2)布置课后作业

  阅读教材96至97页内容,整理课堂笔记,习题5.1第1,2,3题。

  高中数学的说课稿13

  各位老师:

  今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用

  在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。

  2、教学的重点和难点

  重点:条件语句的表示方法、结构和用法;用条件语句表示算法。

  难点:理解条件语句的表示方法、结构和用法。

  二、教学目标分析

  1、知识与技能目标:

  ⑴正确理解条件语句的概念,并掌握其结构。

  ⑵会应用条件语句编写程序。

  2、过程与方法目标:

  ⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。

  ⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。

  ⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。

  3、情感,态度和价值观目标

  ⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。

  ⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。

  ⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。

  三、教学方法与手段分析

  1、教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  2、教学手段:运用计算机、图形计算器辅助教学

  四、教学过程分析

  1、创设情境(约4分钟)

  首先,我要求学生们编写程序,输入一元二次方程

  的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。

  2、探究新知(约8分钟)

  为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:

  例1 编写一个程序,求实数x的绝对值。

  整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.

  3、知识应用(约15分钟)

  此环节有两个例题

  例2 编写程序,写出输入两个数a和b,将较大的数打印出来

  例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.

  先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)

  4、练习巩固(约4分钟)

  课本第30页第3题

  练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。

  5、课堂小结(约5分钟)

  条件语句的步骤、结构及功能、

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用

  6、布置作业

  课本练习第3、4题

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

  7、板书设计

  1.2.2条件语句

  1、条件语句的一般格式

  (1)IF-THEN-ELSE语句

  格式: 框图:

  (2)IF-THEN语句

  格式: 框图:

  2、小结

  (1)

  (2)

  (3)

  2、例1 引例

  例2 例4

  例3

  高中数学的说课稿14

  各位评委老师,大家好!

  我是本科数学XX号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

  一、教材分析

  1、教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  2、教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、例题讲解,学以致用

  例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1、3A组1、2、3 ,二组 习题1、3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

  以上就是我对本节课的设计,谢谢!

  高中数学的说课稿15

  各位评委老师好:今天我说课的.题目是

  是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

  一、 教材分析

  是在学习了基础上进一步研究 并为后面学习 做准备,在整个高中数学中起着承上启下的作用,因此本节内容十分重要。

  根据新课标要求和学生实际水平我制定以下教学目标

  1、 知识能力目标:使学生理解掌握

  2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

  3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

  观察勇于思考的学习习惯和严谨 的科学态度

  根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

  二、教法学法

  根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

  三、 教学过程

  1、由……引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  对于本题:……

  2、由实例得出本课新的知识点是:……

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

  4、能力训练。

  课后练习……

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  四、教学评价

  学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

  高中数学的说课稿16

  各位老师你们好!今天我要为大家讲的课题是

  首先,我对本节教材进行一些分析:

  一、教材分析(说教材):

  1、教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。

  2、教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)知识目标:

  (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,

  (3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

  3、重点,难点以及确定依据:

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  重点: 通过 突出重点

  难点: 通过 突破难点

  关键:

  下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

  二、教学策略(说教法)

  1、 教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。

  2、教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  3、学情分析:(说学法)

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学

  生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  4、教学程序及设想:

  (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  (2)由实例得出本课新的知识点

  (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

  (7)板书

  (8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  教学程序:

  课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

  高中数学的说课稿17

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。

  4、重点与难点

  教学重点:

  (1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性。

  教学难点:

  (1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性。

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。

  三、 教学过程

  教学

  环节

  教 学 过 程

  设 计 意 图

  问题

  情境

  (播放中央电视台天气预报的音乐)

  满足在定义域上的单调性的讨论。

  2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。

  3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。

  4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

  高中数学的说课稿18

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1)能确定一些简单函数的奇偶性。

  2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。

  【情感、态度与价值观】

  经过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上到达了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的进取状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、构成概念

  在这一环节中共设计了2个探究活动。

  探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三)学生探索、领会定义

  探究3下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1确定下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。

  例1设计意图是归纳出确定奇偶性的步骤:

  (1)先求定义域,看是否关于原点对称;

  (2)再确定f(-x)=-f(x)还是f(-x)=f(x)。

  例2确定下列函数的奇偶性:

  例3确定下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?

  例4(1)确定函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。

  高中数学的说课稿19

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

  根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

  教学重点:正弦定理的资料,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

  二、教法

  根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

  三、学法:

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,构成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

  (二)探寻特例,提出猜想

  1、激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2、那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3、让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1、强调将猜想转化为定理,需要严格的理论证明。

  2、鼓励学生经过作高转化为熟悉的直角三角形进行证明。

  3、提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4、思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1、让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2、正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

  3、运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1、例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2、例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1、在△ABC中,已知下列条件,解三角形。

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2、在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  学生板演,教师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1、用向量证明了正弦定理,体现了数形结合的数学思想。

  2、它表述了三角形的边与对角的正弦值的关系。

  3、定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

  高中数学的说课稿20

  一、本节资料的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特资料。这一节课与排列、组合的基本概念有着紧密的联系,经过对这一节课的学习,既能够让学生理解、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的本事

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点资料。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,应对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生理解概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的资料及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。贴合教学论中的自觉性和进取性、巩固性、可理解性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生经过主动思考、动手操作来到达对知识的"发现"和理解,进而完成知识的内化,使书本的知识成为自我的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,能够极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,能够将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习本事,增强学生的综合素质,从而到达教学的目标。教学中,教师创设疑问,学生想办法解决疑问,经过教师的启发点拨,类比推理,在进取的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,贴合学生认知水平,培养了学习本事。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的资料作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下头的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章资料的独特性,从应用的广泛看学习本章资料的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节资料的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  经过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都能够独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不一样的走法?

  引伸2:若完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不一样方法?

  这个问题的两个引申由渐入深、循序渐进为学生理解分类计数原理做好了准备。

  板书分类计数原理资料:

  完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,那么完成这件事共有种不一样的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理资料,启发总结得下头三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不一样两类的两种方法都是不一样的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不一样的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不一样走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都能够从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不一样的颜色闪现出六种不一样的走法,让学生列式求出不一样走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理资料)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不一样的方法,做第二步有m2种不一样的方法,……,做第n步有mn种不一样的方法。那么,完成这件事共有N=m1×m2×…×mn种不一样的方法。

  同样趁学生对定理有必须的认识,引导学生分析分步计数原理资料,启发总结得下头三点注意:(出示幻灯片)

  (1)各步骤相互依存,仅有各个步骤完成了,这件事才算完成;

  (2)根据问题的特点在确定的分步标准下分步;

  (3)分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4能够组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1)每一个三位数是由什么构成的?(三个整数字)

  (2)023是一个三位数吗?(百位上不能是0)

  (3)组成一个三位数需要怎样做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4)怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到能够组成的三位整数的个数是N=4×5×5=100。

  答:能够组成100个三位整数。

  (教师的连续发问、启发、引导,帮忙学生找到正确的解题思路和计算方法,使学生的分析问题本事有所提高。

  教师在第二个例题中给出板书示范,能帮忙学生进一步加深对两个基本原理实质的理解,周密的研究,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的构成有着进取的促进作用,也能够为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4.学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7。

  补充题:

  1、在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小能够分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2、某学生填报高考志愿,有m个不一样的志愿可供选择,若只能按第一、二、三志愿依次填写3个不一样的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3、在所有的三位数中,有且仅有两个数字相同的三位数共有多少个?

  (提示:能够用下头方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个仅有两个数字相同的三位数)

  4、某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不一样的选法?

  (提示:由于8+5=13》10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自我梦想的成绩。

【高中数学的说课稿】相关文章:

1.高中数学说课稿

2.高中数学说课稿

3.高中数学说课稿

4.高中数学说课稿

5.高中数学说课稿

6.高中数学说课稿

7.高中数学说课稿

8.高中数学经典说课稿范文

9.高中数学说课稿范文