自然数的性质
1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素假设能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
3、传递性:设n1,n2,n3都是自然数,若n1>n2,n2>n3,那么n1>n3。
4、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1<n2。
5、最小数原理:自然数集合的任一非空子集中必有最小的数。具备性质3、4的'数集称为线性序集。容易看出,有理数集、实数集都是线性序集。但是这两个数集都不具备性质5,例如所有形如nm(m>n,m,n都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。