高一数学-指数函数说课稿

2024-11-23 数学说课稿

  作为一位优秀的人民教师,通常需要准备好一份说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么说课稿应该怎么写才合适呢?下面是小编帮大家整理的高一数学-指数函数说课稿,希望对大家有所帮助。

  高一数学-指数函数说课稿 1

  我本节课说课的内容是高中数学必修一第三章第一节第二课时——指数函数的定义、图像及性质。我将尝试运用新课标的理念指导本节课的教学,新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础,从教材分析,教学目标分析,教法学法分析和教学过程分析这四个方面加以说明。

  一、教材分析

  1、教材的地位和作用:

  函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。

  2、教学的重点和难点:

  根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。

  二、教学目标分析

  基于对教材的理解和分析,我制定了以下教学目标:

  1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

  2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

  3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

  三、教法学法分析

  1、学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。

  2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

  3、学法分析

  让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

  四、教学过程:

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  学生回答:与之间的关系式,可以表示为。

  问题2:折纸问题:让学生动手折纸

  学生回答:

  ①对折的次数与所得的层数之间的关系,得出结论

  ②对折的次数与折后面积之间的关系(记折前纸张面积为1),得出结论

  问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。

  学生回答:写出取次后,木棰的剩留量与与的函数关系式。

  设计意图:

  (1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的.认知规律。从而引入两种常见的指数函数①②

  (2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

  受指数函数的形式。

  (二)导入新课

  引导学生观察,三个函数中,底数是常数,指数是自变量。

  设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数分别以的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

  (三)新课讲授

  1.指数函数的定义

  一般地,函数叫做指数函数,其中是自变量,函数的定义域是R的含义:

  设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:

  问题:指数函数定义中,为什么规定,如果不这样规定会出现什么情况?

  设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

  对于底数的分类,可将问题分解为:

  (1)若会有什么问题?(如,则在实数范围内相应的函数值不存在)

  (2)若会有什么问题?(对于,都无意义)

  (3)若又会怎么样?(无论取何值,它总是1,对它没有研究的必要.)

  师:为了避免上述各种情况的发生,所以规定。

  在这里要注意生生之间、师生之间的对话。

  设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

  教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

  1:指出下列函数那些是指数函数:

  2:若函数是指数函数,则:

  3:已知是指数函数,且,求函数的解析式。

  设计意图:加深学生对指数函数定义和呈现形式的理解。

  2.指数函数的图像及性质

  在同一平面直角坐标系内画出下列指数函数的图象

  画函数图象的步骤:列表、描点、连线

  思考如何列表取值?

  教师与学生共同作出图像。

  设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

  利用几何画板演示函数的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:

  教师组织学生结合图像讨论指数函数的性质。

  设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

  (四)巩固与练习

  例1:比较下列各题中两值的大小

  教师引导学生观察这些指数值的特征,思考比较大小的方法。

  (1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

  (5)题底不同,指数相同,可以利用函数的图像比较大小。

  (6)题底不同,指数也不同,可以借助中介值比较大小。

  例2:已知下列不等式,比较的大小:

  设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

  (五)课堂小结

  通过本节课的学习,你学到了哪些知识?

  你又掌握了哪些数学思想方法?

  你能将指数函数的学习与实际生活联系起来吗?

  设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

  (六)布置作业

  1、练习B组第2题;习题3-1A组第3题

  2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和

  你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

  3、观察指数函数的图象,比较的大小。

  设计意图:课后思考的安排,激发学生的学习兴趣,主要为学有余力的学生准备的。并为下一节课讲授指数函数图像随底数a变化规律作铺垫。

  高一数学-指数函数说课稿 2

尊敬的评委老师:

  大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。

  为了更好的呈现我的教学思路,我将以教什么、怎么教以及为什么这么教为思路,具体从教材分析、教学目标分析、学情分析、教法、学法以及教学过程等几个方面展开我的说课。

  教材分析

  教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。

  学情分析

  新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的'教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。

  教学目标

  教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:

  知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。

  过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。

  情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。

  而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。

  教学教法

  正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。

  教学过程

  以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。

  首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。

  其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。

  接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。

  板书设计

  当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。

  高一数学-指数函数说课稿 3

  一、说教材

  1、《指数函数》在教材中的地位、作用和特点

  今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2、教学目标、重点和难点

  通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

  知识维度:初中已经学习了正比例函数、反比例函数和一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  能力维度:学生对采用“描点法”描绘函数图象的.方法已基本掌握,能够为研究指数函数的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  (1)教学目标

  知识目标:

  ①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系。

  ②掌握指数函数的概念。

  ③掌握指数函数的图象和性质。

  能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:

  (1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。

  (2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。

  (3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

  (4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

  2、教法选择

  (1)本节课采用的方法有;

  启发发现法、课堂讨论法、多媒体教学法

  (2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)

  二、教学设计

  在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

  1、创设情景、导入新课

  教师活动:

  ①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1个分裂成2个,2个分裂成4个,一个这样的细胞分裂x次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。

  ②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。

  ③引导学生把对应关系概括到形式。

  学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;

  设计意图:

  ①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;

  ②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;

  ③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2、启发诱导、探求新知

  (1)指数函数概念的引出

  教师活动:

  ①引导学生观察这两个函数,寻找他们的特征

  ②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现

  ③引导学生观察指数函数与幂函数在概念上的区别。

  学生活动:

  ①学生独立思考并回忆指数的概念;

  ②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;

  ③理清指数函数与幂函数在概念上的区别。

  设计意图:

  ①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;

  ②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  ③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。

  (2)研究指数函数的图象

  教师活动:

  ①给出两个简单的指数函数和,并要求学生画它们的图象。

  ②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象。

  ③利用函数作图器和几何画板作图。

  学生活动:

  ①思考画函数图象的方法有哪些?

  ②画出这两个简单的指数函数图象。

  ③让学生利用计算器或计算机来画。

  设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。

  高一数学-指数函数说课稿 4

  一、教材分析

  1.《指数函数》在教材中的地位、作用和特点

  《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、借贷利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2.教学目标、重点和难点

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

  知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

  (1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

  (2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

  (3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

  (4)教学重点:指数函数的图象和性质。

  (5)教学难点:指数函数的图象性质与底数a的关系。

  突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的'基础上充分结合图象,利用数形结合来扫清障碍。

  二、教法设计

  由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

  1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

  4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

  三、学法指导

  本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

  1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

  2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

  3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

  4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

  四、程序设计

  在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

  1.创设情景、导入新课

  教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。

  学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。

  设计意图:通过生活实例激发学生的学习动机,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;

  2.启发诱导、探求新知

  教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

  学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。

  设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

  3.巩固新知、反馈回授

  教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。

  学生活动:①学习解题的规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。

  设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与借贷利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。

  4.归纳小结、深化目标

  教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

  学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

  设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

  5.板书设计

  考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

  五、教学评价

  教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

  当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

  高一数学-指数函数说课稿 5

  一、说教材

  教材的地位及前后联系

  本节课是《中等职业教育规划教材数学》第一册第四章第二节《指数函数》。本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,通过学习可进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,也为今后进一步研究函数的性质特别是后面的对数函数打下坚实的基础,同时也培养了学生对函数的应用意识。因此本课有十分重要地位和作用,它对知识起到了承上启下的作用。

  教学目标:

  知识目标:

  1、掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数;

  2、掌握指数函数的图像和性质;

  3、能根据单调性解决比较大小的问题。

  能力目标:

  1、培养学生观察、分析、分类、归纳、探索发现解决问题的能力,体会从特殊到一般的研究方法和分类讨论思想。

  2、提高学生运用现代信息化手段解决数学问题的能力。

  情感目标

  1、通过问题的解决,树立学生的自信心,体会成功与快乐;

  2、渗透数形结合、分类讨论的思想,激发学生学习数学的兴趣,培养学生探索精神和创新意识;

  3、通过学习让学生感受到数学与现实生活的联系,让学生发现生活中的函数问题。

  教材的重点和难点:

  教学重点:指数函数的概念、图像和性质;

  教学难点:如何由图像归纳指数函数的性质以及性质的应用。

  二、学情分析

  根据这几年的.教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完第三章函数的性质,应用的又是初中比较熟悉的一元二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质,学生感觉很吃力。对于我任教的12财会班的学生整体理论知识水平参差不齐,学生缺乏自主探索、发现的意识。但是性格活泼、兴趣广泛,乐于实践。因此我在备课时以学生为本,以学生活动为主线,从兴趣出发,由2012年春节晚会的魔术引出本节课的指数函数,让学生从特殊到一般去认识指数函数,然后通过多媒体课件的充分展示让学生分组讨论、归纳出指数函数的性质。

  三、教法、学法

  教学方法:启发、合作探究、讲练结合等教学方法。充分遵循“教师为主导,学生为主体”的教学原则,采用多媒体辅助教学手段,借助多媒体,演示指数函数的图像形成过程,便于总结函数的性质。

  学习方法:采用自主探究、小组合作、观察归纳的学习方法。

  四、教学程序

  教学流程:

  教学流程设计

  1、创设情境,导入新课

  2、构建模型,形成概念

  3、深入探究,发现性质

  4、讲练结合,巩固提高

  5、课堂小结,构建体系

  6、作业布置,延伸课堂

  教学过程:

  1、创设情境,导入新课

  通过春节的撕报纸的魔术调动学生的兴趣,教师接着引导学生分析撕报纸得到的分数与撕报纸的次数之间的函数关系,分析出撕报纸得到的每一分小报纸的面积与撕报纸的次数之间得到的函数关系,从而建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

  2、构建模型,形成概念

  通过两个具体的指数函数模型,给出指数函数概念,让学生体会由特殊到一般的思想,并通过练习一判断一个函数是否是指数函数,加深学生对指数函数概念的理解。

  3、深入探究,发现性质

  在这个环节,函数图像的性质是本节课的重点也是难点,我准备采用多媒体技术辅助教学突破重点、难点,这一环节关键是弄清楚底数a的变化对函数图像及性质的影响,利用多媒体动感显示,通过颜色的区别,加深感性认识,非常直观形象地演示a的变化与图像的变化规律,突破静态思维,使难点迎刃而解。

  华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图像突破,体会数形结合的思想。通过两个指数函数的作图过程巩固学生作图能力,让学生初步发现图像规律。紧接着同时通过软件让学生举出4个指数函数,通过软件快速画出四个具体的指数函数图像,充分引导学生通过观察图像发现指数函数的图像规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

  4、讲练结合,巩固提高

  教师通过对例题一比较两个函数值的大小、例题二求函数的定义域引导学生如何使用函数的性质解决问题,同时通过学生进行一些巩固练习使学生对函数能进行较为基本的应用。

  5、课堂小结,构建体系

  小结环节,让学生自己总结函数的概念和性质,让学生建立研究函数的知识体系

  6、作业布置,延伸课堂

  作业布置环节必做题巩固学生上课内容,选做题“古莲子年龄之谜”的问题为学习能力较强的同学更大的发挥空间,因材施教,分层作业,巩固提高,为后续的学习奠定基础,同时也拓展学生的知识视野。

  高一数学-指数函数说课稿 6

尊敬的各位考官:

  大家好,我是今天的x号考生,今天我说课的题目是《指数函数及其性质》。

  新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。本节课选自人教A版高中数学必修1,主要讲解的内容是指数函数的概念以及它的图象和性质。之前学生已经学习了指数的运算以及指数的相关性质,为本节课奠定了一定的基础,并且之前学习函数性质的方法也为本节课的探究提供了帮助。本节课的学习,为以后研究函数的性质,以及解决生活中的问题起到非常关键性的作用。所以,本节课的学习对于学生来说至关重要。

  二、说学情

  接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适当地适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象等能力已经发展比较成熟。所以教学中,可以将更多的活动交给学生进行探究,还可以进行自主学习,提高各方面的能力。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点。

  (二)过程与方法

  在学习的过程中,体会研究具体函数及其性质的过程和方法,体会从具体到一般的过程,学会数形结合的方法。

  (三)情感、态度与价值观

  感受数学与现实生活及其他学科的联系,感受数学的重要性。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的'教学重点是:指数函数的概念和性质。教学难点是:用数形结合的方法从具体到一般地探索、概括指数函数的性质。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  接下来引导学生类比之前研究函数的方法,明确函数图象在研究性质中起到非常重要的作用,利用数形结合思想研究函数的性质。

  以上过程中充分体现了学生是学习的主体,教师是组织者、引导者、合作者。通过这样的教学,不仅能够让学生有一个轻松愉快的学习氛围,还能够帮助学生提高发现问题、分析问题、解决问题等能力。

  高一数学-指数函数说课稿 7

  一、说教材:

  1.在教材中的地位和作用

  本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。

  二、说学情:

  2.学情分析

  心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。

  此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  三、说教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。

  过程与方法: 让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的`乐趣。

  情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。

  四、说教学方法:

  教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  (1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;

  (2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。

  (3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

  五、说教学过程:

  1、导入新课(2分钟)

  创设情境 ,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?

  财主应付给打工者的工钱为1073741824分≈1073万元

  (为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)

  2、探索新知(7分钟)

  问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?

  问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?

  归纳:函数 中,指数x为自变量,底2为常数.

  概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为

  (设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )

  3、分组讨论(8分钟)

  4、例题讲解(12分钟)

  5、强化练习(8分钟)

  6、课堂总结(2分钟)

  7、布置作业(1分钟)

  高一数学-指数函数说课稿 8

  一、教学内容分析

  本节课是《课程标准实验教科书·1》(北师大版)第三章第三节第三课(3.3.3)指数函数的图像及其性质。根据我所任教的学生的实际情况,将指数函数的图像及其性质划分为两节课(探究图像及其性质,指数函数及其性质的应用),这是第一节课“探究图像及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

  二、学生学习情况分析

  指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

  三、设计思想

  1.函数及其图像在中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的。我们知道,函数的表示法有三种:列表法、图像法、解析法,以往函数的学习大多只关注到图像的作用,这其实只是借助了图像的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

  2.结合《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中实践以下两点:

  (1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

  (2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

  3.通过活动向学生渗透数学思想方法。

  四、教学目标

  根据任教班级学生的实际情况,本节课确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图像;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图像和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

  五、教学重点与难点

  1.教学重点

  指数函数的概念、图像和性质。

  2.教学难点

  对底数的分类,如何由图像、解析式归纳指数函数的性质。

  六、教学过程

  (一)创设情景、提出问题(约3分钟)

  师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少粒米?

  学生回答后公布事先估算的数据:51号同学该准备102粒米,大约5克重。

  师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?

  [学情设计]

  学生可能说很多或能算出具体数目

  师:大家能否估计一下,51号同学该准备的米有多重?

  教师公布事先估算的数据:51号同学所需准备的约重1.2亿吨。

  师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!

  [设计意图]

  用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

  在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?

  学生很容易得出y=2x(x∈N*)和y=2x(x∈N*

  [学情设计]

  学情预设:学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围。

  (二)师生互动、探究新知

  1.指数函数的定义

  师:其实,在本章开头的问题2中,也有一个与y=22类似的关系式y=1.073x(x∈N*,x≤20)

  (1)让学生思考讨论以下问题(问题逐个给出):(约3分钟)

  ①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?

  ②它们能否构成函数?

  ③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

  [设计意图]

  设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现y=2x,y=1.073x是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

  引导学生观察,两个函数中,底数是常数,指数是。

  师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成y=ax的形式。自变量在指数位置,所以我们把它称作指数函数。

  (2)让学生讨论并给出指数函数的定义。(约6分钟)

  对于底数的分类,可将问题分解为:

  ①若a<0会有什么问题?(如a=-2,x则在实数范围内相应的函数值不存在)

  ②若a=0会有什么问题?(对于x≤0,ax都无意义)

  ③若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)

  师:为了避免上述各种情况的发生,所以规定a>0且a≠1.

  在这里要注意生生之间、师生之间的对话。

  [学情设计]

  ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a>0,且a≠1;a=1为什么不行?

  ②若学生只给出y=ax,教师可以引导学生通过类比一次函数(y=kx+b,k≠0)、反比例函数(,k≠0)、二次函数(y=ax2+bx+c,a≠0)中的限制条件,思考指数函数中底数的限制条件。

  [设计意图]

  ①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

  ②讨论出a>0,且a≠1,也为下面研究性质时对底数的分类做准备。

  接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如,y=2×3x,y=32x,y=-2x

  [学情设计]

  学生可能只是关注指数是否是变量,而不考虑其他的。

  [设计意图]

  设计意图:加深学生对指数函数定义和呈现形式的理解。

  2.指数函数性质

  (1)提出两个问题(约3分钟)

  ①目前研究函数一般可以包括哪些方面。

  [设计意图]

  让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性)。

  ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?

  可以从图像和解析式这两个不同的角度进行研究;可以从具体的'函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

  [设计意图]

  ①让学生知道图像法不是研究函数的唯一方法,由此引导学生可以从图像和解析式(包括列表)不同的角度对函数进行研究;

  ②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

  (2)分组活动,合作学习(约8分钟)

  师:好,下面我们就从图像和解析式这两个不同的角度对指数函数进行研究。

  ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图像的角度入手研究指数函数;

  ②每一大组再分为若干合作小组(建议4人一小组);

  ③每组都将研究所得到的结论或成果写出来以便交流。

  [学情设计]

  考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

  [设计意图]

  通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

  (3)交流、总结(约10~12分钟)

  师:下面我们开一个成果展示会!

  教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

  教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?

  师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?例如:过定点(0,1),y=ax与的图像关于y。

  [学情设计]

  ①首先选一从解析式的角度研究的小组上台汇报;

  ②对于从图像的角度研究的,可先选没对底数进行分类的小组上台汇报;

  ③问其他小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图像的变化。

  [设计意图]

  ①函数的表示法有三种:列表法、图像法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图像角度研究只是能直观地看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

  ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和,培养其数学素养。

  ③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

  师:从图像入手我们很容易看出函数的单调性、奇偶性以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

  教师通过几何画板中改变参数a的值,追踪y=ax的图像,在变化过程中,让全体学生进一步观察指数函数的变化规律。

  师生共同总结指数函数的图像和性质,教师可以边总结边板书。

  (三)巩固训练、提升总结(约8分钟)

  1.例:已知指数函数f(x)=ax(a>0,且a≠1)的图像经过点(3,π),求f(0),f(1),f(-3)的值。

  解:因为f(x)=ax的图像经过点(3,π),所以f(3)=π

  即a3=π,解得,于是。

  所以f(0)=1,f(1),F

  [设计意图]

  通过本题加深学生对指数函数的理解。

  师:根据本题,你能说出确定一个指数函数需要什么条件吗?

  师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

  [设计意图]

  让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

  2.练习:(1)在同一平面直角坐标系中画出y=3x和的大致图像,并说出这两个函数的性质;

  (2)求下列函数的定义域:①,②。

  3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?

  [学情设计]

  学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。

  [设计意图]

  ①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

  ②总结本节课中所用到的数学思想方法。

  ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

  4.作业:课本76页习题3,A组第3题。

  七、教学反思

  1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

  2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

  3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉运用这些数学思想方法去分析、思考问题。

  高一数学-指数函数说课稿 9

  教学目标:

  进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

  教学重点:

  用指数函数模型解决实际问题。

  教学难点:

  指数函数模型的建构。

  教学过程:

  一、情境创设

  某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为xx万元,后年的产值为xx万元。若设x年后实现产值翻两番,则得方程 。

  二、数学建构

  指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等

  递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

  三、数学应用

  例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

  例2 某医药研究所开发一种新药,据检测:如果成人按规定的.剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数= f(t)的解析式。

  例3 某位公民按定期三年,年利率为2.70%的方式把5000元存入银行。问三年后这位公民所得利息是多少元?

  例4 某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

  (1)写出本利和随存期x变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

  (复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

  小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算。这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式。比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b。这就是复利计算方式。

  例5 20xx~20xx年,我国国内生产总值年平均增长7.8%左右。按照这个增长速度,画出从20xx年开始我国年国内生产总值随时间变化的图象,并通过图象观察到20xx年我国年国内生产总值约为20xx年的多少倍(结果取整数)。

  练习:

  1、(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;

  (2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。

  2、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 。

  3、我国工农业总产值计划从20xx年到20xx年翻两番,设平均每年增长率为x,则得方程。

  四、小结:

  1、指数函数模型的建立;

  2、单利与复利;

  3、用图象近似求解。

  五、作业:

  课本P71—10,16题。

  高一数学-指数函数说课稿 10

  一、教学目标:

  1、知识与技能:

  (1) 结合实例,了解正整数指数函数的概念。

  (2)能够求出正整数指数函数的解析式,进一步研究其性质。

  2、 过程与方法:

  (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法。

  (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫。

  3、情感。态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心。

  二、教学重点:

  正整数指数函数的定义。教学难点:正整数指数函数的解析式的确定。

  三、学法指导

  学生观察、思考、探究。教学方法:探究交流,讲练结合。

  四、教学过程

  (一)新课导入

  [互动过程1]:

  (1)请你用列表表示1个细胞分裂次数分别

  为1,2,3,4,5,6,7,8时,得到的细胞个数;

  (2)请你用图像表示1个细胞分裂的次数n( )与得到的细

  胞个数y之间的关系;

  (3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用

  科学计算器计算细胞分裂15次、20次得到的细胞个数。

  解:

  (1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数

  分裂次数 1 2 3 4 5 6 7 8

  细胞个数 2 4 8 16 32 64 128 256

  (2)1个细胞分裂的次数 与得到的`细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

  (3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576。

  探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数。 细胞个数 与分裂次数 之间的关系式为 。细胞个数 随着分裂次数 的增多而逐渐增多。

  [互动过程2]:问题2。电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1。

  (1)计算经过20,40,60,80,100年,臭氧含量Q;

  (2)用图像表示每隔20年臭氧含量Q的变化;

  (3)试分析随着时间的增加,臭氧含量Q是增加还是减少。

  解:

  (1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

  (2)用图像表示每隔20年臭氧含量Q的变化如图所

  示,它的图像是由一些孤立的点组成。

  (3)通过计算和观察图形可以知道, 随着时间的增加,臭氧含量Q在逐渐减少。

  探究:从本题中得到的函数来看,自变量和函数值分别

  又是什么?此函数是什么类型的函数?,臭氧含量Q随着

  时间的增加发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数。 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少。

  [互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

  正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中 是自变量,定义域是正整数集 。

  说明:

  1、正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集。

  2、在研究增长问题、复利问题、质量浓度问题中常见这类函数。

  (二)例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 。写出 , 间的函数关系式,并求出经过5年,森林的面积。

  分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式。

  解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2)。

  练习:课本练习1,2

  补充例题:高一某学生家长去年年底到银行存入xx元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

  解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3, n个月后他应取回的钱数为y=20xx(1+2.38%)n; 所以n与y之间的关系为y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12。

  补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

  (三)小结:

  1、正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集。

  2、在研究增长问题、复利问题、质量浓度问题中常见这类函数。

  (四)作业:课本习题3—1 1,2,3

  • 相关推荐

【高一数学-指数函数说课稿】相关文章:

指数函数的说课稿08-29

高中数学《指数函数》说课稿06-09

高职数学指数函数说课稿10-20

《指数函数》说课稿10-18

指数函数说课稿08-28

指数函数及性质说课稿范文10-05

高一数学教案《指数函数和对数函数》10-18

高一数学说课稿08-21

高一数学说课稿12-28