小学数学《数学广角》教案

2024-06-18 数学教案

  作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的小学数学《数学广角》教案,仅供参考,欢迎大家阅读。

小学数学《数学广角》教案1

  设计说明

  《数学课程标准》中指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。”逻辑推理是进一步学习数学的基础,为打好这个基础,本设计注重通过游戏活动让学生理解逻辑推理的含义,体验推理的过程。同时帮助学生建立多种推理模式,并学会用语言表述推理过程。

  1.通过游戏活动激发兴趣,经历推理过程,理解推理含义。

  低年级的学生对游戏永远充满了兴趣。首先出示双胞胎的照片,在没有任何提示的情况下让学生进行猜想,进而引导学生了解要想猜对必须要有提示,体验所给的提示不同,所猜的结果也不一样,调动学生猜的兴趣和积极性。然后通过猜书活动、填数活动,引导学生根据已知条件进行判断并得出结论,使学生经历推理过程,并初步理解逻辑推理的含义,即推理就是我们根据已知条件获得一个结论的方法。

  2.帮助学生建立多种推理模式,并学会用语言表达推理过程。

  在小学阶段主要是发展学生合情推理的能力。合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。由于学生在推理的过程中基本都是借助语言表述,因此本设计注重引导他们借助表格来推理,也可以借助连线来推理,简化了推理过程,感受思考问题方式的多样性和简洁性。同时培养学生在推理的过程中做到言之有理、落笔有据。让学生根据所给的提示,清晰地表述自己在推理过程中的想法。语言是思维的外壳,只有想得清,才能说得明。最后在教学中给学生留下一部分空间让其交流、表达,培养了学生的表达能力。

  课前准备

  教师准备 PPT课件

  学生准备 表格

  教学过程

  ⊙创设情境,引入新课

  1.导语:新学期开始,班里来了一对双胞胎兄弟,哥哥叫大壮,弟弟叫小壮(课件出示),你能分清谁是哥哥,谁是弟弟吗?为什么?

  (学生自由讨论,汇报)

  生:我分不清,因为他们长得一模一样。

  2.过渡:老师帮你们一下。(课件演示)其中的一个说:“我不是哥哥。”现在你们能分清谁是哥哥,谁是弟弟吗? 说明理由,为什么作出这样的判断。

  (学生在小组内交流,然后全班汇报)

  3.揭示课题:刚才同学们根据双胞胎兄弟中一人的话,判断出了谁是哥哥,谁是弟弟,这种推理方法叫排除法。你们能根据老师给出的提示得出正确的结论,这样的思维过程叫推理。其实这样的推理在我们的生活中运用得非常广泛,生活中有许多的事情需要我们根据已知条件来进行推理,今天我们就来学习简单的推理。(板书课题)

  设计意图:从生活中常见的实际问题引入,判断哪个人是哥哥,哪个人是弟弟,学生的积极性被调动起来,同时也让学生感受到数学与生活的密切联系。

  自主学习,探究新知

  一、教学教材109页例1。

  1.课件出示教材109页例1,整理信息。

  (1)教师引导学生仔细观察图片,把整理出的数学信息进行交流。

  (2)学生反馈:有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红说:“我拿的是语文书。” 小丽说:“我拿的不是数学书。” 问题是小刚拿的是什么书,小丽拿的是什么书。

  (3)教师提示:刚才的这段话里包含着一些信息,我们需要把这几句话整理一下才能作出准确的判断,这就是整理信息。

  2.探究方法。

  (1)教师组织学生先独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,然后小组交流。

  (2)指名汇报。

  预设

  生1:可以把人名和书名写成两行,根据条件连线。小红拿的是语文书,就直接连线,剩下的小丽和小刚就只能连数学书和品德与生活书。小丽说她拿的不是数学书,那小刚拿的就是数学书,把小刚和数学书连上。最后把小丽和品德与生活书连上。

  生2:通过分析,我知道小红拿的'是语文书,那小丽和小刚拿的就是数学书和品德与生活书。小丽说她没拿数学书,那就是说小丽拿的是品德与生活书,则小刚拿的是数学书。

  3.明确思考关键。

  (1)质疑:为什么几位同学叙述自己的思考过程时都从“小红拿的是语文书”开始呢?

  (2)学生小组交流,汇报。明确推理应抓住关键信息,层层分析,最终推导出结论。

  (3)师生共同总结:推理时,一般先找到最关键的条件,根据这个条件往往能得到一个结论,这个结论可以帮助我们进行下一步推理。实际推理时,方法有很多,边读边思考是推理的一种方法。连线法和列表法能让我们的推理过程更简洁、直观,我们可以根据需要选择合适的推理方法。

  二、教学教材110页例2。

  1.课件出示教材110页例2。

  (1)读题思考,然后说说你知道了什么信息。

  (2)提示:你们首先能确定哪行哪列的数?

  (先看哪一个空格所在的行和列出现了三个不同的数,这样就能确定这个空格应填的数)

  A是几?你是怎么想的?B是几?你是怎么想的?接着该怎么填?

  2.探究方法。

  (1)学生在小组内讨论、交流,说一说自己的想法。

  (2)指名汇报。

  (3)小组派代表上台讲解。

小学数学《数学广角》教案2

  教学目标:

  1.通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,归纳出解决这类问题的最优策略。

  2、通过讨论、探究、逻辑推理等活动,寻找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛应用,经历数学方法从具体到抽象、从特殊到一般的提炼过程,初步培养学生的应用数学的意识和解决实际问题的能力。

  教学重点:经历观察、猜测、判断、推理的思维过程,归纳出解决问题的最优策略。

  教学难点:体会解决问题有多种策略,通过解决实际问题,初步学会运用最优化的方法解决问题。

  教具准备:瓶装口香糖、课件

  教学设计:

  一、情境导入,感受新知

  1、课件出示影音资料:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的.主要原因是一个不合格的零件(橡皮圈)引起的。可见,不合格零件的危害有多大。

  2、你从播放的影片中看到了什么?

  3、飞机失事有可能是什么原因造成的?

  这节课我们就来研究如何找出不合格产品,也就是找次品。

  板书:找次品。

  二、学用天平,了解原理

  1、老师这里有5瓶口香糖,其中一盒少了几颗,但是我不知道是哪一瓶?请同学们帮帮老师好吗?你有什么办法把它找出来?

  2、你们都很聪明,老师听了你们的建议决定用天平来找次品。那你们会用天平吗?

  3、怎样用天平来找次品?谁能边演示边把找次品的过程说给大家听?(师板书)

  小结我们用天平找次品时,不管我们把零件分成几份,天平一次能称几份?

  三、归纳策略,体会最优

  如果老师这里不是5瓶,而是有9瓶口香糖中有一瓶我多放了几颗(比其它几瓶重一些),你至少需要几次就能保证找出这瓶?

  1、现在我们不用天平了,用画图一步一步地分析、推理,请同桌的合作学习。

  课件演示:

  课件出示:

  零件个数分的份数每份各几个保证能找到次品的次数

  9 9 1,1,1,1,1,1,1,1,1 4

  9 5 2,2,2,2,1 3

  9 3 3,3,3 2

  9 3 4,4,1 3

  2、请同学们仔细观察这表,你有什么发现?你喜欢那种称法?

  用天平来找次品我们把待分物品分成3份,尽量平均分这种方法最好。

  板书:分成3份,尽量平均分最好

  四、应用策略,拓展提高

  1、你们通过实验、讨论找到了解决问题的最优方法。孙悟空和猪八戒也来凑热闹了。孙悟空把手上的珍珠递给猪八戒说:八戒,这13颗珍珠中有一颗要轻些,是我用猴毛变的。如果你能用最少的次数保证能找出假珍珠,这12颗珍珠就归你了。猪八戒抓破脑袋也没有想出办法。我们能用学到的知识帮帮八戒,好吗?

  五、课堂回顾,知识延伸

  1、通过这节课你学会了什么?

  2、这节课我们研究的是总数可以平均分成3份的这一类找次品问题,当然在生活中有些次品不止一个,不知是较轻还是较重;总数里可能有也可能没有等等。如果感兴趣的同学,课后可以再去研究研究。

  板书:

  找次品

  用天平称分成3份平均分--最优

小学数学《数学广角》教案3

  教学内容分析:

  搭配就是排列与组合,这样的思想方法不仅应用广泛,而且是以后学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。

  学情分析:

  二年级学生学习兴趣浓厚,喜欢思考,具有简单的分析、判断、推理能力。但是学生合作意识不强,胆子也较小,思考问题不够全面,有序性不强。本节内容,学生才开始接触,但在学习生活中,经常遇到,对学生来说,并不陌生,启发学生通过操作、观察、归纳以及合作交流,从而掌握搭配的方法。

  教学目标:

  1.通过观察、猜测、操作等活动,找出最简单的事物的排列数。

  2、使学生经历探索简单事物排列规律的过程,初步培养学生有顺序地、全面地思考问题的意识。

  3、在自主尝试学习过程中,感受数学与生活的紧密联系,在数学活动中养成与他人合作的良好习惯。

  教学重点:

  自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。

  教学难点:怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。

  教具准备:数字卡片、课件等。

  学具准备:数字卡片、彩笔。

  教学过程:

  一、情景创设

  1、同学们,老师听说咱班的同学特别喜欢学数学,今天老师就带大家到数学广角去逛一逛。

  2、数学广角的城堡可真漂亮,我们走近点吧!可是,大门被一把密码锁锁住了。小朋友们你们有信心解开吗?生:有

  二、探究新知

  1、师:可是刚才的密码锁太简单啦,还有一个超级密码锁呢!看

  狮子大王提醒我们:密码是由1、2、3其中的两个数拼成的两位数,每个两位数的十位和个位上的数字不一样。你认为密码会是多少呢?

  请你们小组合作,用数字卡片摆一摆。

  (课件出示)要求:利用手中的三张数字卡片,同桌两人合作,一人摆数,一人把数写在练习纸上,最后数出一共摆了几个两位数。比一比哪个组写的`最全。

  2、汇报总结

  同桌两人汇报记录的结果,师找具有代表性的写法,在展示台上出示:如有学生遗漏的,帮助补上。

  ①有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数。12、21、23、32、13、31

  ②先确定十位,再将个位变动。12、13、21、23、31、32

  ③先确定个位,再将十位变动。21、31、12、32、13、23

  (全班同学交流,注意突破:在组成两位数时有数字重复或者遗漏这一难点)

  师:超级密码现在有六种可能,到底是那个呢?狮子大王又给我们新的提示:十位和个位相加是5(将答案缩小范围到32和23。提醒排列的顺序也很重要(板书:有序)),并且个位比十位小揭晓答案:32。

  如果老师换几个数字0、2、3,你能组成几个不同的两位数呢?

  师:你们真是细心的孩子,恭喜大家成为密码破解达人!

  三、灵活运用,解决问题。

  师:恭喜你们,闯关成功,门打开了,里面有什么呢?(课件出示任务)

  1、任务一:涂颜色。(教材第97页“做一做”)

  (1)全班学生独立思考完成。

  (2)指名学生(有代表性的)到前面展示。

  (3)先独自思考,再全班交流。

  (4)交流评价,理解方法。

  2、数学广角的风景如此美丽,我们一起合影留念吧!3名同学坐成一排合影,有多少种坐法?

  师:坐在位上的同学也别闲着,我们来当摄影师吧!摄影师除了拿相机照相还得干些什么?

  引导学生第一个位置不动,后面两人交换位置。做出4种不同的排列方法,让学生发现规律。

  (透过这道题让学生体会固定位置与交换位置相结合的方法进行有序排列)

  3、老师还想考考你们的语文知识学的怎么样?用“读、好、书”三个字一共有几种读法?(要求:不遗漏,不重复)

  四、归纳总结,拓展延伸。

  今天你们在数学广角学到了什么?有什么收获?我们在日常生活中也要学会有顺序地、全面地思考问题,你们能到做吗?只要你们细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以把生活装点得更加美丽!

  五、板书设计

  十位个位十位个位十位个位

  121221

  211331

  132112

  312332

  323113

  233223

  交换位置确定十位确定个位

  不重复、不遗漏

  六、课后反思

  本节课的内容与生活联系密切,但以前学生不会全面、有序地考虑问题,所以在教学过程中,我着重让学生理解和掌握“不重复也不遗漏”的方法以及搭配时有序与无序的特点。用数字的排列来理解不重复、不遗漏,具体、简单,效果很好。在整个的教学活动中,学生学习的兴趣都很浓厚,合作交流积极。但要一个人说出全部的组合数仍然有困难,所以还要给予学生更多思考的机会和练习。

小学数学《数学广角》教案4

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)

  然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)101520┉

  间距(米)555┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的'距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  1305

  250

  10

  3

  4

  21

  41000

  101

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

小学数学《数学广角》教案5

  教学目标:

  1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

  2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

  3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重、难点:

  让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

  学情分析:

  “找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

  教学过程:

  一、弄清问题题意,激发探究欲望

  师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

  问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的`球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

  (一分钟思考)学生汇报:1次丶2次…

  师:请只用1次的同学说一说,你是怎样想的?

  生1:

  生2:

  师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

  师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

  二、简化问题,经历问题解决基本过程。

  对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

  生:可以从最少的试一试。

  师:如果从最简单的入手研究,2个小球至少称几次?

  生:1次。

  师:如果是3个呢?

  生猜测:2次?3次?1次?

  师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

  生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)

  师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡如果不平衡不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

  师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

  三、再次探究“关键数目”,初步感知、归纳规律

  1、探究4个小球的情况。

  (1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

  生猜测:4次?3次?

  师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

  (生分组研究)

  师:4个小球时,你们称了几次?

  (生边汇报师边板书枝状图)

  师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

  师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

  (生汇报师出示课件)

  师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

  (引导学生发现规律,把结果填入表格中)

  师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

  (生汇报,重点是8个球)(把结果填入表格中)

  师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

  生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

  师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

  师:大家最后称的次数不同,原因是什么呢?

  生:分的组数不同,每组数量也不同。

  师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

  (生分组讨论后汇报)

  生1:应该分3组,因为天平有2个托盘

  生2:每组的数目还要少。

  生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

  师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

  (师板书:分3组,尽量平均分。)

  四、进一步发现规律

  师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

  (生汇报,师板书:10(3,3,4)3次)(课件)

  师:如果是27个呢?(课件)

  (生汇报,师板书:27(9,9,9)3次(课件)

  师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

  看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

  (生讨论并汇报结果)(课件)

  师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

  (小组研究)

  生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

  师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

  五、课堂小结

  随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

  在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

  探究问题,学会化繁为简

  解决问题,要有优化意识

小学数学《数学广角》教案6

  【教学内容】:

  《植树问题》是新课程标准实验教材四年级下册的内容。

  【设计理念】:

  《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。

  【学期与教材分析】:

  教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。

  【教学目标】

  1、通过动手操作、合作交流,理解一条线段上植树问题的规律。

  2、学会应用植树问题的模型去解决实际问题的方法。

  3、经历和体验“复杂问题简单化”的解题方法和策略。

  【教学重难点】

  引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的`机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

  一、练习引入,构建新知。

  课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。

  俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。

  二、注重实践,体验探究。

  教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、联系生活,拓展思维。

  体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。

  总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。

小学数学《数学广角》教案7

  教学内容:

  人教版义务教育课标实验教材(四上)112的例1

  教学目标:

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

  教学重点:

  体会优化思想。

  教学难点:

  探究解决问题的最优方案。

  教具准备:

  多媒体课件、探究用表格

  学具准备:

  三张圆纸片。

  教学过程:

  一、创设情境,生成问题

  1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?

  2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)

  师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。

  (这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)

  教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

  小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。

  师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”

  二、探索交流,解决问题

  1、学生操作,探究烙3张饼的方法。

  让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。

  (相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)

  2、学生演示烙饼法。

  师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)

  让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”

  得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)

  教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。

  师:老师是用什么方法烙的?(也是用快速烙饼法)

  师:使用这种方法时,你发现了什么?

  (1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的`时间短。)

  让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。

  (烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  3、拓展延伸:

  师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  小组活动,通过小组交流,使学生找到最佳方法。

  教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”

  (通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  在这样过程逐步形成课件表格.饼数

  2 3 4

  同时烙两张饼 快速烙饼法 两张两张地烙

  先烙两张,后三张用快速5 烙饼法

  两张两张地烙

  18 15

  烙 饼 方 法

  最少所需的时间(分)

  6 9 12

  7 8 9 10

  21 24 27 30

  4、探究规律。

  让学生仔细观察表格、小组讨论交流,说一说自己的发现。

  (根据情况决定是否给学生启示:

  1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?

  2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)

  学生在充分交流探讨的基础上,得出结论:

  1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

  得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)

  教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”

  (通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)

  三、实践应用,内化提高

  课件出示114页做一做第1题。

  教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

  1、引领理解题意。

  2、全班交流

  四、回顾整理,反思提升

  1、这节课你学到了什么?

  2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

小学数学《数学广角》教案8

  教学目标:

  1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

  2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

  3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

  教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

  教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

  教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

  教学过程:

  一、 唤起与生成

  1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

  2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

  3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

  确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

  4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

  二、探究与解决

  (一)、小组探究:4放3的简单鸽巢问题

  1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  2、审 题:

  ①读题。

  ②从题目上你知道了什么?证明什么?

  (我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

  ③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

  “不管怎么放”:就是随便放、任意放。

  “总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

  “至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

  3、探 究:

  ①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

  ②活 动:小组活动,四人小组。

  听要求!

  活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

  听明白了吗?开始!

  3、反 馈:汇报结果

  同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

  可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

  追 问:谁还有疑问或补充?

  预设:说一说你比他多了哪一种放法?

  (2,1,1)和(1,1,2)是一种方法吗?为什么?)

  只是位置不同,方法相同

  5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

  (1)逐一验证:

  第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

  符合总有一个笔筒里至少有2支铅笔。

  第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

  第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  符合条件的那个笔筒在三个笔筒中都是最多的。

  (2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

  (3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

  所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (二)自主探究:5放4的简单鸽巢原理

  1、过 渡:依此推想下去

  2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

  3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

  4、验 证:你们的猜测对吗?让我们来验证一下。

  活动要求:

  (1)思考有几种摆法?记录下来。

  (2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

  好,开始。(教师参与其中)。

  5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

  分别是:5000 、4100、 3200、 3110 、2200、2111

  (课件同步播放)

  预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

  6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

  7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

  ①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

  ②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

  不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

  (三)、探究鸽巢原理算式

  1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

  还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

  (好麻烦,是啊, 想想都觉得麻烦!)

  2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

  其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

  3、平均分:为什么这样分呢?

  生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

  师:你为什么要先在每个笔筒中放1支呢?

  生:因为总共只有4支,平均分,每个笔筒只能分到1支。

  师:为什么一开始就要去平均分呢?

  生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

  师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

  生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

  师:看来,平均分是保证“至少”数的关键。

  4、列式:

  ①你能用算式表示吗?

  4÷3=1……1 1+1=2

  ②讲讲算式含义。

  a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

  b、真棒!讲给你的同桌听。

  5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

  5÷4=1……1 1+1=2

  说说算式的意思。

  a、同桌齐说。

  b、谁来说一说?

  师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

  (四)探究稍复杂的鸽巢问题

  1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

  2、题组(开火车,口答结果并口述算式)

  (1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

  (2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

  7÷5=1…… 2 1+2=3?

  7÷5=1…… 2 1+1=2

  出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

  你认为哪种结果正确?为什么?

  质 疑:为什么第二次还要平均分?(保证“至少”)

  把铅笔平均分才是解决问题的关键啊。

  (3)把笔的数量进一步增加:

  8支铅笔放5个笔筒里,至少数是多少?

  8÷5=1……3 1+1=2

  (4)9支铅笔放5个笔筒里,至少数是多少?

  9÷5=1……4 1+1=2

  (5)好,再增加一支铅笔?至少数是多少?

  还用加吗?为什么 10÷5=2 正好分完, 至少数是商

  (6)好再增加一支铅笔,,你来说

  11÷5=2……1 2+1=3 3个

  ①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

  ②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

  ③铅笔的支数到多少支的时候,至少数就变成了4了呢?

  (7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

  (8)算的这么快,你一定有什么窍门?(比比至少数和商)

  (9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

  3、观察算式,同桌讨论,发现规律。

  铅笔数÷笔筒数=商……余数” “至少数=商+1”

  你和他们的发现相同吗?出示:商+1

  4、质疑:和余数有没有关系?

  (明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

  (五)归纳概括鸽巢原理

  1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

  100÷30=3…… 10 3+1=4 至少数是4个

  (因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

  2、推广:

  刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

  (1)书本放进抽屉

  把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

  8÷3=2……2? 2+1=3

  (因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

  (2)鸽子飞进鸽巢

  11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

  11÷4=2……3? 2+1=3

  答:至少有 3只鸽子飞进同一只鸽笼。

  (3)车辆过高速路收费口(图)

  (4)抢凳子

  书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的`问题我们都可以用这种方法解答。

  3、建立模型:鸽巢原理:

  同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

  知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

  5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

  有信心用我们发现的原理继续接受挑战吗?

  3、巩固与应用

  那我们回头看看课前小魔术,你明白它的秘密了吗?

  1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

  答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

  正确应用鸽巢原理是表演成功的秘密武器!

  2、飞镖运动

  同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

  课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

  在练习本上算一算,讲给你的同桌听听。

  谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

  41÷5=8……1? 8+1=9

  在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

  3、我们六年级共有367名学生,其中六(2班)有49名学生。

  (1)六年级里至少有两人的生日是同一天。

  (2)六(2)班中至少有5人的生日是在同一个月。

  他们说的对吗?为什么?

  同桌讨论一下。

  谁来说说你们的想法?

  1、367人相当于鸽子,365、或366天相当于鸽巢......

  2、49人相当于鸽子,12个月相当于鸽巢......)

  真理是越辩越明!

  3、星座测试命运

  说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

  你用星座测试过命运吗?你相信星座测试的命运吗?

  我们用鸽巢原理来说说你的想法。

  全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

  4、柯南破案:

  “鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

  (课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

  年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

  大爷:是什么手机号呢?这么贵?

  年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

  老大爷:哦!

  听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

  聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

  (手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

  4、 回顾与整理。

  这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

  下 课!

  板书设计:

  鸽? 巢? 问? 题

  物体? 抽屉 至少数

  4? ÷ 3 =? 1……1 1+1=2?

  5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

  7? ? ÷ 5? =? 1……2? ? ? 1+1=2

  9 ÷ 5? =? 1……4? 1+1=2

  11 ? ÷? 5? =? 2……1 ? 2+1=3

  28 ÷ 5? =? 5……3? 5+1=6

  100 ? ÷ 30? =? 3……1 3+1=4?

  m ÷ n = 商……余数? 商+1

小学数学《数学广角》教案9

  设计说明

  1、利用多媒体创设教学情境。

  新课伊始,让学生观看“挑战者”号飞机失事的全过程,让学生从机毁人亡的事件中感受到“次品”带来的危害,领悟到检验的重要性,培养学生的责任意识。这样的情境创设,体现了数学来源于生活、服务于生活、高于生活的教学理念。

  2、重视引导学生用直观的方式清晰地表达出推理过程。

  《数学课程标准》指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。本设计在教学例1时,通过组织学生进行试验的操作活动,让他们在充分的操作、试验、讨论、探究中,找到解决问题的多种策略,然后引导学生用直观、简明的方式,清晰地表示出推理的过程,进一步理清思路,为后面数量更多的找次品问题做好认知和方法上的准备。

  课前准备

  教师准备

  PPT课件 天平 3瓶钙片

  学生准备

  每人8张圆片学具 每组1张找次品记录表

  教学过程

  教学环节

  教师指导

  学生活动

  效果检测

  一、创设情境,引入新课。(5分钟)

  1、课件播放“挑战者”号飞机失事的录像。

  2、引导学生猜测造成飞机失事的原因。

  3、导入新课。

  1、看录像。

  2、思考并回答老师提出的问题。

  生1:驾驶员操作不当。

  生2:飞机故障,零件不合格。

  3、明确本节课要学习的内容。

  1、列举生活中质量不合格的产品带来的危害有哪些?

  二、实践操作,自主探究。(10分钟)

  1、出示2瓶钙片:其中有1瓶少了3片,引导学生探究找次品的方法。

  2、出示一架天平:阐述天平的工作原理和特点。

  3、出示3瓶钙片:其中有1瓶少了3片,引导学生尝试找出轻的一瓶。

  4、引导学生汇报找次品的方法。

  5、引导梳理、比较:无论是先称哪2瓶,只要称一次就能找出次品了。

  1、自主探究找次品的方法。

  (1)打开瓶子把钙片倒出来数一数。

  (2)用手掂一掂。

  (3)用秤称一称。

  2、认识天平,明确天平的工作原理,并在天平两端放入质量相同的物体,感受天平平衡的条件。

  3、利用学具独立思考、自主探究,可以拿出3个学具代替3瓶钙片,进行实际操作。

  4、各小组派代表汇报找次品的方法。

  5、汇报:只要称一次就能找出次品了。

  2、有5瓶钙片,其中1瓶少了4片。如果用天平称,天平两端各放1瓶,至少称()次才能找出次品;如果天平两端各放2瓶,至少称()次才能找出次品。

  三、合作交流,发现最优方案。(15分钟)

  1、课件出示例2。

  指名读题,说一说“至少”的含义。

  2、组织小组合作找出次品,填写表格。

  3、引导学生观察表格,分组汇报找次品的方法。

  4、引导学生观察表格:

  (1)分成的份数、分的.方法与找出次品所要称的次数有什么关系?

  (2)怎样分找出次品需要称的次数最少?

  5、用你发现的方法找出9个、10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的。

  1、读题,说一说“至少”的含义。

  2、小组合作,2名同学摆学具,1名同学用图示作记录,1名同学填写“找次品记录表”。

  3、利用实物和表格汇报:

  (1)分成8(3,3,2),至少要称2次。

  (2)分成8(4,4),至少要称3次。

  (3)分成8(2,2,2,2),至少要称4次。

  4、讨论、交流,明确:把8分成3份(每份数量尽量相等)去称,能保证称的次数最少。

  5、小组合作操作、验证,汇报试验结果。

  3、用天平从7件物品中找出1件次品(次品轻一些),把7件物品分成()份称较合适。

  4、有8瓶水,其中7瓶质量相等,另外有1瓶是糖水,比其他7瓶水略重一些,至少称()次能保证找出这瓶糖水。

  四、巩固练习,拓展延伸。(8分钟)

  1、引导学生完成教材112页“做一做”。

  2、补充说明:分成3份的方法最好,不能平均分的,每份的数量尽量相等。

  1、独立完成教材112页“做一做”。

  2、汇报,说明自己的最优方案。

  5、如果有12个零件,其中一个是次品(次品略重),那么应该怎么分,称的次数最少而且保证能找出次品?

  五、课堂总结,布置作业。(2分钟)

  1、通过今天的学习,你有什么收获?

  2、布置课后学习内容。

  谈自己本节课的收获。

小学数学《数学广角》教案10

  一、设计说明

  排列和组合的方法不仅在生活中运用广泛,而且是后面学习概率统计知识的基础,同时也是培养和发展学生抽象的逻辑思维能力的好素材。本节课主要是使学生通过观察、猜测、比较、实验等活动,找出最简单事物的排列数和组合数;初步培养学生有顺序地、全面地思考问题的意识;使学生感受数学与生活的密切联系,激发学生学习数学、探索数学的浓厚兴趣。我从以下几个方面进行了一些尝试:

  1、创设情境,激发兴趣

  为了激发了学生学习的主动性,把各项教学内容全部贯穿于活动当中,增强了学生的参与意识,提高了学生学习的积极性。

  2、关注合作,促进交流:为了充分体现学生学习的主体性,我运用小组共同合作、探究的学习方式,让学生互相交流,互相沟通,把积极思考的主动权完全交给学生,使学生发现问题、探索问题、解决问题的能力得到提高。

  3、组织活动,引发思考:为了让学生真正成为自主探索、合作、交流的主体,我组织了许多与教学内容紧密相连的活动,充分体现了数学学科所独有的特点——数学思考。

  二、教学内容:

  义务教育课程标准实验教科书(人教版)三年级上册第112—114页。

  三、教学目标:

  1、使学生通过观察、猜测、动手操作、合作交流等活动,找出简单事件的排列数或组合数。

  2、通过互相交流,使学生体会解决问题策略的`多样性,发展符号感。

  3、结合具体情境,使学生经历解决实际问题的过程,进一步体会数学与日常生活的密切联系,增强应用数学的意识。

  4、使学生在探索规律的活动中获得成功的体验,增强对数学学习的兴趣和信心。

  四、教学中重、难点:培养学生初步的观察分析和推理能力,以及有顺序的全面的思考问题的意识。

  五、教学过程:

  (一)、揭示课题

  今天我们一起进入有趣的数学广角。(板书课题)

  (二)、探究新知

  1、创设情境

  小红的衣柜里放着五件衣服(出示图片),她可以怎样搭配?一共有几种不同的穿法?

  活动策略:

  ①教师请同学们拿出课前老师发给你的衣服卡片,自己摆一摆。

  ②引导讨论:有这么多种不同的穿法,怎样才能做到不遗漏、不重复呢?

  ③教师结合课件演示,介绍连线法。

  (三)、课堂实践,巩固新知。

  1、破密破。(课件出示课件密码门)

  (1)学生用数字抽拉卡拉一拉,并记下结果。

  (2)学生汇交流(老师根据学生的回答,点击课件展示密码)

  (3)生生相互。

  2、早餐搭配。(课件出示情境图)

  (1)老师提出要求:饮料和点心只能各选一种,可以有多少种不同的搭配呢?

  (2)学生独立练习,在书上连一连。

  (3)学生汇报早餐搭配。

  3、路线选择。降件展示游玩景点图)

  (1)师引导观察:从儿童乐园到百鸟园有几条路线?从百鸟园去猴山有几条路线?

  (2)学生独立思索后小组交流

  (3)全班同学互相交流

  4、评选小小节目主持人活动。

  师提出要求:主持人要求一名男同学与一名女同学搭配,每小组根据男、女生人数设计搭配,由组长作好活动记录。

  (1)小组活动,老师参与小组活动

  (2)各小组展示记录

  (3)师生共同

  四、通过今天的学习你有什么收获?

小学数学《数学广角》教案11

  教 材 分 析

  《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会统筹思想在实际生活中的应用,以及在解决问题中的运用。

  学 情 分 析

  四年级学生在数学知识和技能方面已有了一定的基础,但是其思维能力尚停留在形象化和表面化,对于数学与生活的联系也不能灵活运用,所以在教学时,教师应做好课前准备,让学生提前了解烙饼的方法和时间。

  教 学 目 标

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的`广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  教学重点和难点

  教学重点:体会优化思想。

  教学难点:寻找解决问题的最优方案。

小学数学《数学广角》教案12

  教学目标:

  1、通过调查身边的电话号码、邮政编码、身份证号码等实践活动,帮助学生初步了解一些简单的数字编码的方法;体会数字编码可以表达一定的信息,并知道数字编码的一般特点。

  2、通过开展对相关编码信息的探索和交流活动,帮助学生积累一些数学活动经验,感受数字编码的思想及其应用价值,初步体验数字编码的思想和方法。

  教学重点:

  感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。

  教学难点:

  感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。

  教学过程:

  一、谈话导入(感受数字与信息的联系)

  引入:同学们,在生活中,我们常常要与数字打交道。比如说,(出示“1”)提问:一件礼物,一个苹果,一张报纸……这里的“1”表示什么?

  提问:可以表示数量和顺序么?你又分别想到了什么?

  (小结:数字组成一个数,可以用来表示数量和顺序,它向我们传递了一些信息,也可以用来编码,同样传递了一些信息。今天这节课,我们就一起来研究,板书——数字和信息。

  二、初识编码,感知特点(说一说)

  交流电话号码信息――感受数码

  ⑴师:像110这样特殊的电话号码,生活中还有很多,你能说一说吗?

  老师也搜集了一些资料,我们一起来看一看。

  小结:其实不管是特殊的.电话号码,还是普通的电话号码,这些由数字组成的编码都给我们的生活带来了方便。

  三、探索编码,感悟方法(看一看)

  观察:跟上一封相比,有什么区别?(多了邮政编码)

  问:你知道为什么要加上邮政编码呢?(学生回答后放录像)

  问:看完录像谁再说说为什么需要加上邮政编码?

  谈话:邮政编码也是一种数字编码,它是由几个数字组成的?别小看这6个数字,它可是表达了丰富的信息呢。谁大胆试着说说看这6个数字都表达了哪些信息呢?

  介绍邮编的相关信息

  ⑴师:21表示江苏省苏南地区;210表示江苏省苏南地区南京邮区;2100表示南京市邮局表示江苏省苏南地区南京邮区; (板书)规律

  四、解读编码,感受价值(比一比)

  研究身份证数码

  ⑴出示身份证图片

  师:从邮政编码我们知道了一个人所在地的相关信息,如果想了解这个人的个人信息,需要知道什么编码?

  1、你能从这几张身份证号码中看出他们的出生日期吗?

  2、猜一猜,哪个是爸爸的?哪个是妈妈的?哪个是小明的?

  ⑵练习解读身份证信息。(出示一张身份证)

  师:你能把身份证上的信息填写完整吗?

  师:你觉得身份证上的数字编码有哪些用处?

  五、总结收获,介绍数字编码在生活中的其它运用。

  谈话:在生活中,有时候人们还用字母或文字、和数字来组合成编码表达信息?比如……(出示相关图片)

  介绍:条形码火车票Z表示直达车,车牌苏A表示南京,图书I表示文学,/前表示出版社编号,/后表示图书馆流水号。

  ⑵提问:用这些编码来表达信息有什么好处?

  你还在哪里见过用数字编码的呢?

  假如生活没有数字,将会……

  师:数字编码在我们的生活中发挥了这么重要的作用,那同学们想不想自己也来编一编呢?编的时候我们要做到在一定范围里,简洁,唯一,有规律。

  ⑴ 出示第1个问题

  师:房间的编号中要包含哪些信息?

  一楼第三个房间该怎样编?四楼第十个房间呢?十楼第九个房间呢?

  ⑵ 出示第2个问题

  明确小组活动要求。

  ⑶集体汇报交流。

  请在小组内讨论出方案,再试着编码!交流时写出代表你自己的编码。

  (学生讨论交流,尝试自主编码,同时让部分学生到黑板前展示自己设计的编码,并解释说明,其他学生进行点评!)

  六、回顾过程,总结经验

  师:今天我们共同研究了数字与信息。在活动中你觉得有什么收获?

小学数学《数学广角》教案13

  教学目标:

  (一)通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。

  (二)能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  (三)在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。

  (四)使学生感受推理在生活中的广泛运用,初步培养学生有顺序的全面的思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。

  教学难点:

  初步培养学生有序的,全面的思考问题及数学表达的能力。

  教学过程:

  (一)激情导入

  游戏:猜猜我的年龄?

  来猜一猜吧!哦,有这么多答案,看来大家没办法确定老师的年龄,给你一个提示:36、37这两数中有一个是老师的年龄。

  有两种可能,老师再给你一个信息,我今年不是36岁,现在答案一样,说说你是怎么猜的。

  像这样根据一些信息提示,得出一些结论,这样的方法叫推理!

  认识他吗?著名侦探柯南,他就是通过自己敏锐观察力和逻辑推理侦破了一个个扑朔迷离的案件,今天他也给我们带来了数学推理挑战题,有信心尝试吗?

  (一)初级挑战

  生活中的推理;

  (二)中级挑战

  教师利用课件呈现例1,出示例题1

  师:同学们,我们认真阅读,然后告诉老师,从题目中你发现了哪些信息?

  生:有三本书,语文、数学、道德与法治。

  生:有三个小朋友,分别是:小红、小丽、小刚。

  生:他们三人各拿一本。

  师:下面三人各拿一本,这个信息是什么意思呢?

  生:他们三人拿的`书都不相同。

  师:下面我们来看看三个小朋友都说了什么话?

  生:小红说:我拿的是语文书。小丽说:我拿的不是数学书。

  师:题目中要让我们求什么?〔问题:小丽拿的是什么书?小刚呢?〕

  师:很好,那他们到底拿的是什么书呢?

  1、选择自己喜欢的方法来完成学习单

  2、完成后,和同桌说说你是怎么想的。

  学生活动,汇报

  学生自主学习完成,教师巡视。

  学生汇报:

  生 1:小红拿的是语文书,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了。

  生 2:用连线的方法

  我把人名和书名写成两行,然后根据小红拿的是语文书,所以小红就与语文书连在一起了,剩下的小丽和小刚就只能连数学和道德与法治了,小丽又说,她拿的不是数学书,那小丽肯定拿了道德与法治了,再连上线,最后小刚拿的就是数学书了,再连上线。

  生3:用表格法(小红拿的是语文书,所以先在小红下打勾,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了

  师:孩子们,再来回顾解决问题的过程,找完数学信息后,部分同学选择了用连线法跟表格的方式来进行整理,这样做可以让我们把信息整理得更加地〔清楚、简洁〕。

  先从哪个条件开始呢?

  三个同学都是从“小红拿到是语文书”找到关键条件,把能确定的就先确定。〔板书:先确定〕

  师:接下来呢?就剩下数学书和道德与法治书了,而小丽又说:〝我拿的不是数学书〝,小丽拿的肯定是道德与法治书了;又在剩下的条件中,根据已给的条件,能排除的先排除。〔板书:排除〕

  最后因为小红拿的是语文书,小丽拿的是道德与法治书,所以小刚拿的就是数学书。最后我们推出结论。

  刚才同学们很厉害,表现这么棒,柯南送给大家一首儿歌,一起念念。

  掌握了推理技巧和方法,我们一起练练手:

  1、试一试

  指明学生读题后,认真思考,同时让学生说一说:你是怎么想的呢?用什么方法?并且请一名同学展示自己是怎么做的,怎么考虑的?

  生:用连线法,把三只狗的名称和重量分别写成两行,因为笑笑是最轻的,所以笑笑和5千克连在一起,乐乐比欢欢重,乐乐就与9千克连在一起,剩下的欢欢就与7千克连在一起。师:同学们,说的真好!

  2、猜一猜

  师:从题目中,我们知道了哪些信息呢?

  生:信封里有一个圆,一个三角形,一个长方形,他们分别是三种颜色中的一个。

  师:哪个图形,我们最能先判断出来,为什么?

  生:绿色的是圆形,因为绿色露出来的是半圆,下面肯定也是半圆,

  师:发现的非常好!那红色和蓝色能不能判断?生:不能。

  师:下面请听老师一个提示:〔出示课件:蓝色说:我不是三角形。〕现在请同学们用喜欢的方法写下来。

  学生展示结果并说一说自己是怎么想的。〔?让学生尽量说出直接阅读后就知道的和连线法,以及表格法〕

  师:下面我们一起来看看到底是不是这样的。〔教师点击课件把信封拿掉,显示结果〕

  师:小朋友真棒!太厉害了!同学们现在跟老师一起说一说,绿色的是圆形,剩下三角形和长方形,蓝色的不是三角形,所以红色的是三角形。最后蓝色的一定是长方形。

  (三)终级挑战

  读题后,同桌两人利用学习单里的卡片摆一摆,验证你的想法,写下数字密码。

  并指名一位同学上台演示,说说你的推理过程。

  恭喜同学们,闯关成功。

  (四)小游戏

  三人游戏,三顶不同颜色的帽子,闭眼,每人分别戴上一顶,根据同伴帽子的颜色,猜自己帽子的颜色,

  (五)课堂总结

  师:同学们,开心吗?通过这节课的学习,你有哪些收获呢?是呀,我们个个都成为了小侦探。推理是一个非常重要的数学思想方法,希望同学们在今后的学习中,能善于观察,勤于思考,用推理解决更多的问题。

小学数学《数学广角》教案14

  教学内容:

  集合的有关思想(课本第108页的例、练习二十四的第l、2题)。

  教学目标:

  1、使学生能借助具体内容,初步体会集合的思想方法。

  2、使学生能利用集合的思想方法解决简单的实际问题。

  教学重难点:

  被学生初步体会集合的.有关思想方法。

  教具准备:

  利用教具,学具等教学辅助手段帮助学生理解。

  教学过程:

  一、导入谈话

  今天老师将把同学们带人“数学广角”,让同学们去认识体会一些有趣的数学问题。

  二、探究新知

  1、教学例1

  (1)读懂统计表。

  教师用电脑课件出示统计表,列出参加语文兴趣小组和数学兴趣的学生名单。

  说一说:从统计表中,你收集到哪些信息?

  议一议:三(1)班共有多少人参加了这两个课外兴趣小组?

  教师引导:看来同学们已经发现了问题,那么如何解决这一问题呢?我们可以用圈来表示:

  (2)认识集合圈。

  ①用多媒体课件分别出示两个集合圈。

  ②让学生先在练习本上画出集合圈,填上相应的学生姓名,然后再汇报结果。教师根据学生汇报,多媒体显示填写内容。并让学生说一说两个图中所表示的意义。

  ③提出问题:

  有的学生姓名在两个集合中都有,应该如何来表示才能更直观、更形象、更简单呢?

  教师利用电脑课件再出来二个空白集合,并填上学生姓名再合并。

  问:你们知道这个图的意思吗?(让学生大胆猜想,说出自己的想法)。

  填写完成后,再让学生说一说不同位置所表示的不同意义,然后再引导学生将集合圈和统计表进行比较。

  (3)列式计算。

  通过以上分析、讨论,学生已经明白杨明、李芳、刘红这三位学生既参加了语文兴趣小组又参加了数学兴趣小组,所以是重复的,在计算点人数时只能计算一次。

  学生列式计算,并说说算式的意义。

  三、巩固运用

  1、课内外作业:

  练习二十四的第1、2题。

  第1题,首先要求学生根据动物的不同属性“"会游泳的”和“会飞的”把它们进行分类。然后再要说一说中间位置“表示什么”。

  第2题,可以引导学生先把两天进的货中重复的部分找出来,然后再计算两天一共进了多少种货。学生计算的时候可以用加法进行计算,也可以直接点数。

  四、课堂小结

  本节课我们学习了什么?你有什么收获?

小学数学《数学广角》教案15

  教学目标:

  1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

  2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

  教学重点:

  经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

  教学难点:

  运用 “鸽巢问题”,解决一些简单的实际问题。

  教具准备:

  每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

  教学过程:

  一、游戏引入:

  师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

  请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

  师小结:一定有一个杯子里至少有两个小球。

  同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

  二、探究原理:

  1、动手摆一摆,感受原理。

  (1)探究物体个数比抽屉多1的情况。

  例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

  全班分小组摆一摆。

  各组长边摆边记录。教师板书,全班同学报数,一起记录。

  联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

  师:总有一个杯子至少有……

  师:A、总有是什么意思?

  师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。

  师:如此往下想,7根小棒放在6个杯子里,

  10根木棒放进9个杯子里

  100根木棒放进99个杯子里会有怎么样的结论?

  要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

  学生讨论。

  师:想出什么办法?谁来说说。

  刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

  (边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

  学生得出:只要小棒数量比杯子数量多1都有这样的`结论。

  2、探究商不是1的情况。

  讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

  那8本书进3个抽屉里。

  10本书放进3个抽屉里又是怎样?你发现了什么?

  我发现 7÷3=2……1

  8÷3=2……2

  10÷3=3……1

  板书:至少数=商+1。

  小结:我们今天探究的原理就是数学中有名的鸽巢原理。

  三、本课总结:

  鸽子÷鸽巢 = 商…… 余数

  至少数 = 商+1

  四、用今天知识来解决生活中的一些实际问题。

  1、做一做

  2、玩扑克的游戏。

  五、板书:略

  • 相关推荐

【小学数学《数学广角》教案】相关文章:

数学广角教案03-18

人教版小学数学广角教案05-17

《数学广角─集合》教案04-01

数学广角推理教案08-25

《数学广角》教案15篇02-10

《数学广角》教案(15篇)03-01

《数学广角》说课稿01-15

数学广角推理教案(7篇)08-31

数学广角推理教案7篇08-25