数学《指数与指数函数》教案

2024-11-13 数学教案

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?下面是小编为大家整理的数学《指数与指数函数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

  数学《指数与指数函数》教案 1

  一、教学目标:

  1、知识与技能:

  (1) 结合实例,了解正整数指数函数的概念.

  (2)能够求出正整数指数函数的解析式,进一步研究其性质.

  2、 过程与方法:

  (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

  (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

  3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

  二、教学重点:

  正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

  三、学法指导

  学生观察、思考、探究.教学方法:探究交流,讲练结合。

  四、教学过程

  (一)新课导入

  [互动过程1]:

  (1)请你用列表表示1个细胞分裂次数分别

  为1,2,3,4,5,6,7,8时,得到的细胞个数;

  (2)请你用图像表示1个细胞分裂的次数n( )与得到的细

  胞个数y之间的关系;

  (3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用

  科学计算器计算细胞分裂15次、20次得到的细胞个数.

  解:

  (1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,

  4,5,6,7,8次后,得到的细胞个数

  分裂次数 1 2 3 4 5 6 7 8

  细胞个数 2 4 8 16 32 64 128 256

  (2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

  (3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,

  所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

  探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数 与分裂次数 之间的关系式为 .细胞个数 随着分裂次数 的增多而逐渐增多.

  [互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

  (1)计算经过20,40,60,80,100年,臭氧含量Q;

  (2)用图像表示每隔20年臭氧含量Q的变化;

  (3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

  解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

  (2)用图像表示每隔20年臭氧含量Q的变化如图所

  示,它的图像是由一些孤立的点组成.

  (3)通过计算和观察图形可以知道, 随着时间的增加,

  臭氧含量Q在逐渐减少.

  探究:从本题中得到的函数来看,自变量和函数值分别

  又是什么?此函数是什么类型的函数?,臭氧含量Q随着

  时间的增加发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少.

  [互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

  正整数指数函数的定义:一般地,函数 叫作正整数指数函数,其中 是自变量,定义域是正整数集 .

  说明: 1.正整数指数函数的'图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

  (二)、例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.

  分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.

  解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

  练习:课本练习1,2

  补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

  解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3, n个月后他应取回的钱数为y=20xx(1+2.38%)n; 所以n与y之间的关系为y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12.

  补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

  (三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

  (四)、作业:课本习题3-1 1,2,3

  数学《指数与指数函数》教案 2

  教材分析:

  “指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

  学情分析:

  通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

  教学目标:

  知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

  过程与方法:

  (1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

  (2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

  情感、态度与价值观:

  (1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

  (2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.

  教学重点

  指数函数的图象和性质

  教学难点

  指数函数概念的引入及指数函数性质的应用

  教法研究:

  本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.

  利用函数图象来研究函数性质是函数中的'一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识

  本节课使用的教学方法有:直观教学法、启发引导法、发现法

  教学过程:

  一、问题情境 :

  问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

  问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?

  分析可知,函数的关系式分别是 与

  问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

  这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

  二、数学建构 :

  1]定义:

  一般地,函数 叫做指数函数,其中 .

  问题4:为什么规定 ?

  问题5:你能举出指数函数的例子吗?

  阅读材料(“放射性碳法”测定古物的年代):

  在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .

  这种方法经常用来推算古物的年代.

  练习1:判断下列函数是否为指数函数.

  (1) (2)

  (3) (4)

  说明:指数函数的解析式y= 中, 的系数是1.

  有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z);

  有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1

  2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

  问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

  函数的定义域,值域,单调性,奇偶性等;

  利用函数图象研究函数的性质

  问题7:作函数图象的一般步骤是什么?

  列表,描点,作图

  探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

  引导学生分析图象并总结此时指数函数的性质(底数大于1):

  (1)定义域?R

  (2)值域?函数的值域为

  (3)过哪个定点?恒过 点,即

  (4)单调性? 时, 为 上的增函数

  (5)何时函数值大于1?小于1? 当 时, ;当 时,

  问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

  (引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).

  根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

  问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?

  (学生完成表格的设计,教师适当引导)

  数学《指数与指数函数》教案 3

  教学目标:

  进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

  教学重点:

  用指数函数模型解决实际问题。

  教学难点:

  指数函数模型的建构。

  教学过程:

  一、情境创设

  某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为 万元,后年的产值为 万元.若设x年后实现产值翻两番,则得方程 。

  二、数学建构

  指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等

  递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

  三、数学应用

  例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

  例2 某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数= f(t)的解析式。

  例3 某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

  例4 某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

  (1)写出本利和随存期x变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

  (复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

  小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的'积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

  例5 20xx~20xx年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从20xx年开始我国年国内生产总值随时间变化的图象,并通过图象观察到20xx年我国年国内生产总值约为20xx年的多少倍(结果取整数)。

  练习:

  1.(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;

  (2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。

  2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 。

  3.我国工农业总产值计划从20xx年到20xx年翻两番,设平均每年增长率为x,则得方程

  四、小结:

  1.指数函数模型的建立;

  2.单利与复利;

  3.用图象近似求解。

  五、作业:

  课本P71-10,16题。

  数学《指数与指数函数》教案 4

  一、教学类型

  新知课

  二、教学目标

  1、理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性。

  2、通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  三、教学重点和难点

  重点:理解指数函数的定义,把握图象和性质。

  难点:认识底数对函数值影响的认识。

  四、教学用具

  投影仪

  五、教学方法

  启发讨论研究式

  六、教学过程

  1)引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数。指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

  1、定义:形如的函数称为指数函数。(板书)

  教师在给出定义之后再对定义作几点说明。

  2、几点说明(板书)

  (1)关于对的规定:

  (2)关于指数函数的定义域(板书)

  (3)关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的`要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3、归纳性质

  七、思考问题,设置悬念

  八、小结

  数学《指数与指数函数》教案 5

  一、内容及其解析

  (一)内容:指数函数的性质的应用。

  (二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  二、目标及其解析

  (一)教学目标

  指数函数的图象及其性质的应用;

  (二)解析

  通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。

  三、问题诊断分析

  解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。

  四、教学过程设计

  探究点一:平移指数函数的图像

  例1:画出函数 的图像,并根据图像指出它的单调区间.

  解析:由函数的解析式可得:

  其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的.图像沿x轴的负方向平移一个单位而得到的

  解:图像由老师们自己画出

  变式训练一:已知函数

  (1)作出其图像;

  (2)由图像指出其单调区间;

  解:(1) 的图像如下图:

  (2)函数的增区间是(-,-2],减区间是[-2,+).

  探究点二:复合函数的性质

  例2:已知函数

  (1)求f(x)的定义域;

  (2)讨论f(x)的奇偶性;

  解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。

  解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).

  (2)变式训练二:已知函数 ,试判断函数的奇偶性;

  简析:∵定义域为 ,且 是奇函数;

  探究点三 应用问题

  例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的

  84%.写出这种物质的剩留量关于时间的函数关系式.

  【解】

  设该物质的质量是1,经过 年后剩留量是 .

  经过1年,剩留量

  变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.

  (1)写出本利和 随存期 变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.

  分析:复利要把本利和作为本金来计算下一年的利息.

  【解】

  (1)已知本金为 元,利率为 则:

  1期后的本利和为

  2期后的本利和为

  期后的本利和为

  (2)将 代入上式得

  六.小结

  通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?

  数学《指数与指数函数》教案 6

  教学目标

  在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点

  指数函数与对数函数的特性。

  难点

  指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法

  多媒体授课。

  学法指导

  借助列表与图像法。

  教具

  多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的`函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

  数学《指数与指数函数》教案 7

  教学目标:

  1.进一步理解指数函数的性质;

  2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

  教学重点:

  指数函数的性质的应用;

  教学难点:

  指数函数图象的平移变换.

  教学过程:

  一、情境创设

  1.复习指数函数的概念、图象和性质

  练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a1,则当x0时,y 1;而当x0时,y 1.若00时,y 1;而当x0时,y 1.

  2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

  二、数学应用与建构

  例1 解不等式:

  (1) ; (2) ;

  (3) ; (4) .

  小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

  例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

  (1) ; (2) ; (3) ; (4) .

  小结:指数函数的平移规律:y=f(x)左右平移 y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h0时,向上平移,反之向下平移).

  练习:

  (1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.

  (2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.

  (3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .

  (4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是 .函数y=a2x-1的图象恒过的定点的坐标是 .

  小结:指数函数的定点往往是解决问题的'突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

  (5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

  (6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

  小结:函数图象的对称变换规律.

  例3 已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

  例4 求函数 的最小值以及取得最小值时的x值.

  小结:复合函数常常需要换元来求解其最值.

  练习:

  (1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;

  (2)函数y=2x的值域为 ;

  (3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

  (4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

  三、小结

  1.指数函数的性质及应用;

  2.指数型函数的定点问题;

  3.指数型函数的草图及其变换规律.

  四、作业:

  课本P55-6,7.

  五、课后探究

  (1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

  (2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

  数学《指数与指数函数》教案 8

  一、教学目标:

  知识与技能:理解指数函数的概念,能够判断指数函数。

  过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

  情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  二、教学重点、难点:

  教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

  三、学情分析:

  学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

  四、教学内容分析

  本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的'基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

  五、教学过程:

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

  问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

  (二)导入新课

  引导学生观察,两个函数中,有什么共同特征?

  (三)新课讲授指数函数的定义

  (四)巩固与练习例题:

  (五)课堂小结

  (六)布置作业

  数学《指数与指数函数》教案 9

  一、教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

  过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

  情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  二、教学重点、难点:

  教学重点:指数函数的概念、图象和性质。

  教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

  三、教学过程:

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

  学生回答:y与x之间的关系式,可以表示为y=2x。

  问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的'质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。

  学生回答:y与x之间的关系式,可以表示为y=0.84x。

  引导学生观察,两个函数中,底数是常数,指数是自变量。

  指数函数的定义

  一般地,函数y?a?a?0且a?1?叫做指数函数,其中x是自变量,函数的定义域是R。x

  问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?

  (1)若a<0会有什么问题?(如a?2,x?

  x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x?0,a无意义)

  (3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)

  师:为了避免上述各种情况的发生,所以规定a?0且a?1。

  练1:指出下列函数那些是指数函数:

  1?(1)y?4x(2)y?x4(3)y?4x(4)y?4?(5(转载于:,n的大小:

  设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

  (五)课堂小结

  (六)布置作业

  数学《指数与指数函数》教案 10

  学习目标

  1. 熟练掌握指数函数概念、图象、性质;

  2. 掌握指数型函数的定义域、值域,会判断其单调性;

  3. 培养数学应用意识.

  学习过程

  一、课前准备

  (预习教材P57~ P60,找出疑惑之处)

  复习1:指数函数的形式是 ,

  其图象与性质如下

  aa1图性质

  (1)定义域:

  (2)值域:

  (3)过定点:

  (4) 单调性:

  复习2:在同一坐标系中,作出函数图象的草图:

  思考:指数函数的图象具有怎样的分布规律?

  二、新课导学

  ※ 典型例题

  例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.

  (1)按照上述材料中的1%的增长率,从2000年起,x年后我国的.人口将达到2000年的多少倍?

  (2)从2000年起到2020年我国人口将达到多少?

  小结:学会读题摘要;掌握从特殊到一般的归纳法.

  试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x年后的总产值为原来的多少倍?多少年后产值能达到120亿?

  小结:指数函数增长模型.

  设原有量N,每次的增长率为p,则经过x次增长后的总量y= . 我们把形如 的函数称为指数型函数.

  例2 求下列函数的定义域、值域:

  (1) ; (2) ; (3) .

  变式:单调性如何?

  小结:单调法、基本函数法、图象法、观察法.

  试试:求函数 的定义域和值域,并讨论其单调性.

  ※ 动手试试

  练1. 求指数函数 的定义域和值域,并讨论其单调性.

  练2. 已知下列不等式,比较 的大小.

  (1) ; (2) ;

  (3) ;(4) .

  练3. 一片树林中现有木材30000 m3,如果每年增长5%,经过x年树林中有木材y m3,写出x,y间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m3.

  三、总结提升

  ※ 学习小结

  1. 指数函数应用模型 ;

  2. 定义域与值域;

  2. 单调性应用(比大小).

  ※ 知识拓展

  形如 的函数值域的研究,先求得 的值域,再根据 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视 . 而形如 的函数值域的研究,易知 ,再结合函数 进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.

  学习评价

  ※ 自我评价

  你完成本节导学案的情况为( ).

  A. 很好 B. 较好 C. 一般 D. 较差

  ※ 当堂检测

  (时量:5分钟 满分:10分)计分:

  1. 如果函数y=ax (a1)的图象与函数y=bx (b1)的图象关于y轴对称,则有( ).

  A. a B. ab

  C. ab=1 D. a与b无确定关系

  2. 函数f(x)=3-x-1的定义域、值域分别是( ).

  A. R, R? B. R,

  C. R, D.以上都不对

  3. 设a、b均为大于零且不等于1的常数,则下列说法错误的是( ).

  A. y=ax的图象与y=a-x的图象关于y轴对称?

  B. 函数f(x)=a1-x (a1)在R上递减

  C. 若a a ,则a1?

  D. 若 1,则

  4. 比较下列各组数的大小:

  ; .

  5. 在同一坐标系下,函数y=ax, y=bx, y=cx, y=dx的图象如右图,则a、b、c、d、1之间从小到大的顺序是 .

  课后作业

  1. 已知函数f(x)=a- (aR),求证:对任何 , f(x)为增函数.

  2. 求函数 的定义域和值域,并讨论函数的单调性、奇偶性.

  数学《指数与指数函数》教案 11

  教学目标

  1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.

  2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.

  3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.

  教学重点与难点

  教学重点:函数单调性的概念.

  教学难点:函数单调性的判定.

  教学过程设计

  一、引入新课

  师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

  (用投影幻灯给出两组函数的图象.)

  第一组:

  第二组:

  生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.

  师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.

  (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)

  二、对概念的分析

  (板书课题:)

  师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.

  (学生朗读.)

  师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

  生:我认为是一致的定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.

  师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

  (通过教师的情绪感染学生,激发学生学习数学的兴趣.)

  师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.

  (指图说明.)

  师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.

  (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

  师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

  (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)

  生:较大的函数值的函数.

  师:那么减函数呢?

  生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.

  (学生可能回答得不完整,教师应指导他说完整.)

  师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

  (学生思索.)

  学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

  (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

  生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

  师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

  生:不能.因为此时函数值是一个数.

  师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

  生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.

  (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)

  师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

  师:还有没有其他的关键词语?

  生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.

  师:你答的`很对.能解释一下为什么吗?

  (学生不一定能答全,教师应给予必要的提示.)

  师:“属于”是什么意思?

  生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.

  师:如果是闭区间的话,能否取自区间端点?

  生:可以.

  师:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

  师:能不能构造一个反例来说明“任意”呢?

  (让学生思考片刻.)

  生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.

  师:那么如何来说明“都有”呢?

  生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.

  师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.

  (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

  师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

  (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

  三、概念的应用

  例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

  (用投影幻灯给出图象.)

  生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

  生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

  师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.

  例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

  师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

  (指出用定义证明的必要性.)

  师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

  (教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)

  师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

  生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函数.

  师:他的证明思路是清楚的一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

  这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.

  (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的)

  调函数吗?并用定义证明你的结论.

  师:你的结论是什么呢?

  上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

  生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

  生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

  域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

  上是减函数.

  (教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

  (1)分式问题化简方法一般是通分.

  (2)要说明三个代数式的符号:k,x1·x2,x2-x1.

  要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

  对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

  四、课堂小结

  师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

  (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

  生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.

  五、作业

  1.课本P53练习第1,2,3,4题.

  数.

  =a(x1-x2)(x1+x2)+b(x1-x2)

  =(x1-x2)[a(x1+x2)+b].(*)

  +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

  数学《指数与指数函数》教案 12

  一、教学内容分析

  本节课是《课程标准实验教科书·1》(北师大版)第三章第三节第三课(3.3.3)指数函数的图像及其性质。根据我所任教的学生的实际情况,将指数函数的图像及其性质划分为两节课(探究图像及其性质,指数函数及其性质的应用),这是第一节课“探究图像及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

  二、学生学习情况分析

  指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

  三、设计思想

  1.函数及其图像在中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的。我们知道,函数的表示法有三种:列表法、图像法、解析法,以往函数的学习大多只关注到图像的作用,这其实只是借助了图像的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

  2.结合《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中实践以下两点:

  (1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

  (2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

  3.通过活动向学生渗透数学思想方法。

  四、教学目标

  根据任教班级学生的实际情况,本节课确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图像;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图像和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

  五、教学重点与难点

  1.教学重点

  指数函数的概念、图像和性质。

  2.教学难点

  对底数的分类,如何由图像、解析式归纳指数函数的性质。

  六、教学过程

  (一)创设情景、提出问题(约3分钟)

  师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少粒米?

  学生回答后公布事先估算的数据:51号同学该准备102粒米,大约5克重。

  师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?

  [学情设计]

  学生可能说很多或能算出具体数目

  师:大家能否估计一下,51号同学该准备的米有多重?

  教师公布事先估算的数据:51号同学所需准备的约重1.2亿吨。

  师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!

  [设计意图]

  用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

  在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?

  学生很容易得出y=2x(x∈N*)和y=2x(x∈N*

  [学情设计]

  学情预设:学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围。

  (二)师生互动、探究新知

  1.指数函数的定义

  师:其实,在本章开头的问题2中,也有一个与y=22类似的关系式y=1.073x(x∈N*,x≤20)

  (1)让学生思考讨论以下问题(问题逐个给出):(约3分钟)

  ①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?

  ②它们能否构成函数?

  ③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

  [设计意图]

  设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现y=2x,y=1.073x是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

  引导学生观察,两个函数中,底数是常数,指数是。

  师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成y=ax的形式。自变量在指数位置,所以我们把它称作指数函数。

  (2)让学生讨论并给出指数函数的定义。(约6分钟)

  对于底数的分类,可将问题分解为:

  ①若a<0会有什么问题?(如a=-2,x则在实数范围内相应的函数值不存在)

  ②若a=0会有什么问题?(对于x≤0,ax都无意义)

  ③若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)

  师:为了避免上述各种情况的发生,所以规定a>0且a≠1.

  在这里要注意生生之间、师生之间的对话。

  [学情设计]

  ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a>0,且a≠1;a=1为什么不行?

  ②若学生只给出y=ax,教师可以引导学生通过类比一次函数(y=kx+b,k≠0)、反比例函数(,k≠0)、二次函数(y=ax2+bx+c,a≠0)中的限制条件,思考指数函数中底数的限制条件。

  [设计意图]

  ①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

  ②讨论出a>0,且a≠1,也为下面研究性质时对底数的分类做准备。

  接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如,y=2×3x,y=32x,y=-2x

  [学情设计]

  学生可能只是关注指数是否是变量,而不考虑其他的。

  [设计意图]

  设计意图:加深学生对指数函数定义和呈现形式的理解。

  2.指数函数性质

  (1)提出两个问题(约3分钟)

  ①目前研究函数一般可以包括哪些方面。

  [设计意图]

  让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性)。

  ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?

  可以从图像和解析式这两个不同的角度进行研究;可以从具体的.函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

  [设计意图]

  ①让学生知道图像法不是研究函数的唯一方法,由此引导学生可以从图像和解析式(包括列表)不同的角度对函数进行研究;

  ②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

  (2)分组活动,合作学习(约8分钟)

  师:好,下面我们就从图像和解析式这两个不同的角度对指数函数进行研究。

  ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图像的角度入手研究指数函数;

  ②每一大组再分为若干合作小组(建议4人一小组);

  ③每组都将研究所得到的结论或成果写出来以便交流。

  [学情设计]

  考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

  [设计意图]

  通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

  (3)交流、总结(约10~12分钟)

  师:下面我们开一个成果展示会!

  教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

  教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?

  师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?例如:过定点(0,1),y=ax与的图像关于y。

  [学情设计]

  ①首先选一从解析式的角度研究的小组上台汇报;

  ②对于从图像的角度研究的,可先选没对底数进行分类的小组上台汇报;

  ③问其他小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图像的变化。

  [设计意图]

  ①函数的表示法有三种:列表法、图像法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图像角度研究只是能直观地看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

  ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和,培养其数学素养。

  ③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

  师:从图像入手我们很容易看出函数的单调性、奇偶性以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

  教师通过几何画板中改变参数a的值,追踪y=ax的图像,在变化过程中,让全体学生进一步观察指数函数的变化规律。

  师生共同总结指数函数的图像和性质,教师可以边总结边板书。

  (三)巩固训练、提升总结(约8分钟)

  1.例:已知指数函数f(x)=ax(a>0,且a≠1)的图像经过点(3,π),求f(0),f(1),f(-3)的值。

  解:因为f(x)=ax的图像经过点(3,π),所以f(3)=π

  即a3=π,解得,于是。

  所以f(0)=1,f(1),F

  [设计意图]

  通过本题加深学生对指数函数的理解。

  师:根据本题,你能说出确定一个指数函数需要什么条件吗?

  师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

  [设计意图]

  让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

  2.练习:(1)在同一平面直角坐标系中画出y=3x和的大致图像,并说出这两个函数的性质;

  (2)求下列函数的定义域:①,②。

  3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?

  [学情设计]

  学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。

  [设计意图]

  ①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

  ②总结本节课中所用到的数学思想方法。

  ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

  4.作业:课本76页习题3,A组第3题。

  七、教学反思

  1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

  2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

  3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉运用这些数学思想方法去分析、思考问题。

  • 相关推荐

【数学《指数与指数函数》教案】相关文章:

高中数学 指数函数 教案12-28

指数函数教案参考09-02

高职数学指数函数说课稿10-20

指数函数是什么10-09

指数函数教学反思10-16

指数函数说课稿08-28

指数函数教学反思12-28

指数函数求导公式08-04

高一数学-指数函数说课稿03-16