初中数学教案

2022-09-19 数学教案

  作为一名无私奉献的老师,通常会被要求编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的初中数学教案,欢迎大家分享。

  初中数学教案 篇1

  三维目标

  一、知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题.

  2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

  二、过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

  2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

  三、情感态度与价值观

  1.积极参与交流,并积极发表意见.

  2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

  教学重点

  掌握从物理问题中建构反比例函数模型.

  教学难点

  从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

  教具准备

  多媒体课件.

  教学过程

  一、创设问题情境,引入新课

  活动1

  问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

  在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

  (1)求I与R之间的函数关系式;

  (2)当电流I=0.5时,求电阻R的值.

  设计意图:

  运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

  师生行为:

  可由学生独立思考,领会反比例函数在物理学中的综合应用.

  教师应给“学困生”一点物理学知识的引导.

  师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

  生:(1)解:设I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R .

  (2) 当I=0.5时,R=10I=100.5 =20(欧姆).

  师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

  生:这是古希腊科学家阿基米德的名言.

  师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

  阻力×阻力臂=动力×动力臂(如下图)

  下面我们就来看一例子.

  二、讲授新课

  活动2

  小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

  (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

  (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

  设计意图:

  物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

  师生行为:

  先由学生根据“杠杆定律”解决上述问题.

  教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

  教师在此活动中应重点关注:

  ①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

  ②学生能否面对困难,认真思考,寻找解题的途径;

  ③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

  师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

  生:解:(1)根据“杠杆定律” 有

  Fl=1200×0.5.得F =600l

  当l=1.5时,F=6001.5 =400.

  因此,撬动石头至少需要400牛顿的力.

  (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

  Fl=600,

  l=600F .

  当F=400×12 =200时,

  l=600200 =3.

  3-1.5=1.5(米)

  因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

  生:也可用不等式来解,如下:

  Fl=600,F=600l .

  而F≤400×12 =200时.

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

  生:还可由函数图象,利用反比例函数的性质求出.

  师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

  用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

  生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

  根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

  师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

  活动3

  问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

  设计意图:

  在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

  师生行为:

  由学生先独立思考,然后小组内讨论完成.

  教师应给予“学困生”以一定的帮助.

  生:解:(1)∵y与x -0.4成反比例,

  ∴设y=kx-0.4 (k≠0).

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y与x之间的函数关系为y=15x-2

  (2)根据题意,本年度电力部门的纯收入为

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

  答:本年度的纯收人为0.6亿元,

  师生共析:

  (1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

  (2)纯收入=总收入-总成本.

  三、巩固提高

  活动4

  一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.

  设计意图:

  进一步体现物理和反比例函数的关系.

  师生行为

  由学生独立完成,教师讲评.

  师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.

  生:V和ρ的反比例函数关系为:V=990ρ .

  生:当ρ=1.1kg/m3根据V=990ρ ,得

  V=990ρ =9901.1 =900(m3).

  所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

  四、课时小结

  活动5

  你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

  设计意图:

  这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

  师生行为:

  学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

  教师组织学生小结.

  反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

  板书设计

  17.2 实际问题与反比例函数(三)

  1.

  2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

  设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

  Fl=k 即F=kl (k>0且k为常数).

  由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

  活动与探究

  学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

  (1)绿化带面积是多少?你能写出这一函数表达式吗?

  (2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

  x(m) 10 20 30 40

  y(m)

  过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

  结果:(1)绿化带面积为10×40=400(m2)

  设该反比例函数的表达式为y=kx ,

  ∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

  ∴函数表达式为y=400x .

  (2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

  初中数学教案 篇2

  【学习目标】

  1.了解圆周角的概念.

  2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

  3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

  4.熟练掌握圆周角的定理及其推理的灵活运用.

  设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

  【学习过程】

  一、 温故知新:

  (学生活动)同学们口答下面两个问题.

  1.什么叫圆心角?

  2.圆心角、弦、弧之间有什么内在联系呢?

  二、 自主学习:

  自学教材P90---P93,思考下列问题:

  1、 什么叫圆周角?圆周角的两个特征: 。

  2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

  (1)一个弧上所对的圆周角的个数有多少个?

  (2).同弧所对的圆周角的度数是否发生变化?

  (3).同弧上的圆周角与圆心角有什么关系?

  3、默写圆周角定理及推论并证明。

  4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?

  5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  三、 典型例题:

  例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,ACB的平分线交⊙O于D,求BC、AD、BD的长。

  例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

  四、 巩固练习:

  1、(教材P93练习1)

  解:

  2、(教材P93练习2)

  3、(教材P93练习3)

  证明:

  4、(教材P95习题24.1第9题)

  五、 总结反思:

  【达标检测】

  1.如图1,A、B、C三点在⊙O上,AOC=100,则ABC等于( ).

  A.140 B.110 C.120 D.130

  (1) (2) (3)

  2.如图2,1、2、3、4的大小关系是( )

  A.3 B.32

  C.2 D.2

  3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则BCD等于( )

  A.100 B.110 C.120 D.130

  4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.

  5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则2=_______.

  (4) (5)

  6.(中考题)如图5, 于 ,若 ,则

  7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

  【拓展创新】

  1.如图,已知AB=AC,APC=60

  (1)求证:△ABC是等边三角形.

  (2)若BC=4cm,求⊙O的面积.

  3、教材P95习题24.1第12、13题。

  【布置作业】教材P95习题24.1第10、11题。

  初中数学教案 篇3

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0<x2,试比较y1和y2的大小。< p="">

  初中数学教案 篇4

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

  初中数学教案 篇5

  教学目标:

  1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、过程与方法:通过观察,归纳一元一次方程的概念。

  3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

  教学重点:归纳一元次方程的概念

  教学难点:感受方程作为刻画现实世界有效模型的意义.

  教学过程:

  一、情景导入:

  我能猜出你们的年龄,相信吗?

  只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

  问:你的年龄乘以2加3等于多少?

  学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

  学生讨论并回答

  二、知识探究:

  1、方程的教学(投影演示)

  小彬和小明也在进行猜年龄游戏,我们来看一看。

  找出这道题中的等量关系,列出方程.

  大家观察,这两个式子有什么特点。

  讨论并回答:什么是方程?方程有哪些特点?

  2、 判断下列式子是不是方程?

  (1)X+2=3(是)(2)X+3Y=6(是)

  (3)3M-6(不是)(4)1+2=3(不是)

  (5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

  情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

  你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

  情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)

  截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

  1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

  下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

  问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

  生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

  四、随堂练习

  1、投影趣味习题,

  2、做一做

  下面有两道题,请选做一题。

  (1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

  (2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

  五、课堂小节

  1、这节课你学到了什么?

  2、这节课给你印象最深的是什么?

  六、作业:分组布置

  数学教案-你今年几岁了搜集整理

  初中数学教案 篇6

  1.知识结构

  2.重点和难点分析

  重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

  一个是夹在两条平行线间;

  一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

  难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

  3.教法建议

  (1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

  (2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

  (3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

  平行四边形及其性质第一课时

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

  2.掌握平行四边形的性质定理1、2.

  3.并能运用这些知识进行有关的证明或计算.

  (二)能力训练点

  1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

  2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

  (三)德育渗透点

  通过要求学生书写规范,培养学生科学严谨的学风.

  (四)美育渗透点

  通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

  二、学法引导

  阅读、思考、讲解、分析、转化

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形性质定理的应用

  2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

  3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

  四、课时安排

  2课时

  五、教具学具准备

  教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

  六、师生互动活动设计

  教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

  第一课时

  七、教学步骤

  【复习提问】

  1.什么叫做四边形?什么叫四边形的一组对边?

  2.四边形的两组对边在位置上有几种可能?

  (教师随着学生回答画出图1)

  图1

  【引入新课】

  在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

  【讲解新课】

  1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

  注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

  2.平行四边形的表示:平行四边形用符号“

  ”表示,如图1就是平行四边形

  ,记作“

  ”.

  align=middle>

  图1

  3.平行四边形的性质

  讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

  平行四边形性质定理1:平行四边形的对角相等.

  平行四边形性质定理2:平行四边形对边相等.

  (教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

  图2如图3

  所以四边形是平行四边形,所以.由此得到

  推论:夹在两条平行线间的平行线段相等.

  图3

  要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4

  4.平行线间的距离

  从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

  我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

  图5

  注意:(1)两相交直线无距离可言.

  (2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

  例1 已知:如图1,

  初中数学教案 篇7

  教学目标

  1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

  2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

  3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

  4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

  重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

  2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

  难点利用数形结合的方法验证公式

  教学方法动手操作,合作探究课型新授课教具投影仪

  教师活动学生活动

  情景设置:

  你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

  新课讲解:

  把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

  教师接着在介绍教材第94页例题的拼法及相关公式

  提问:还能通过怎样拼图来解决以下问题

  (1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

  (2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

  试用拼一个长方形的方法,把这个二次三项式因式分解。

  这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

  了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

  小结:

  从这节课中你有哪些收获?

  (教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

  学生回答

  a(b+c+d)=ab+ac+ad

  (a+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  学生拿出准备好的硬纸板制作

  给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

  作业第95页第3题

  板书设计

  复习例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教学后记

  初中数学教案 篇8

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

  初中数学教案 篇9

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

  初中数学教案 篇10

  教学目标

  1.知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

  2.过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  3.情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度.

  重、难点与关键

  1.重点:去括号法则,准确应用法则将整式化简.

  2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

  3.关键:准确理解去括号法则.

  教具准备

  投影仪.

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号.

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

  利用分配律,可以将式子中的括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

  二、范例学习

  例1.化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

  解答过程按课本,可由学生口述,教师板书.

  例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

  解答过程按课本.

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

  三、巩固练习

  1.课本第68页练习1、2题.

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路点拨:一般地,先去小括号,再去中括号.

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题.

  2.选用课时作业设计.

  初中数学教案 篇11

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

  初中数学教案 篇12

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:略

  初中数学教案 篇13

  教学目标

  1、使学生掌握的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

  (3)x能利用的性质比较某些幂形数的大小,会利用的图象画出形如x的图象。

  2、x通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

  (2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是x的样子,不能有一点差异,诸如x,x等都不是。

  (2)对底数x的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

  教学设计示例

  课题

  教学目标

  1。x理解的定义,初步掌握的图象,性质及其简单应用。

  2。x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

  3。x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  教学重点和难点

  重点是理解的定义,把握图象和性质。

  难点是认识底数对函数值影响的认识。

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一、x引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。

  1、6、(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x次后,得到的细胞分裂的个数x与x之间,构成一个函数关系,能写出x与x之间的函数关系式吗?

  由学生回答:x与x之间的关系式,可以表示为x。

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。

  由学生回答:x。

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。

  x的概念(板书)

  1、定义:形如x的函数称为。(板书)

  教师在给出定义之后再对定义作几点说明。

  2、几点说明x(板书)

  (1)x关于对x的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。

  若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。

  (2)关于的定义域x(板书)

  教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

  (4)x,x

  (5)x。

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的.图象,再细致归纳性质。

  3、归纳性质

  作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

  函数

  1、定义域x:

  2、值域:

  3、奇偶性x:既不是奇函数也不是偶函数

  4、截距:在x轴上没有,在x轴上为1。

  对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)

  在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。

  二、图象与性质(板书)

  1、图象的画法:性质指导下的列表描点法。

  2、草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。

  最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

  填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

  3、性质。

  (1)无论x为何值,x都有定义域为x,值域为x,都过点x。

  (2)x时,x在定义域内为增函数,x时,x为减函数。

  (3)x时,x,x x时,x。

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

  三、简单应用x (板书)

  1、利用单调性比大小。x(板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

  例1、x比较下列各组数的大小

  (1)x与x;x(2)x与x;

  (3)x与1x。(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

  解:x在x上是增函数,且<x。(板书)

  教师最后再强调过程必须写清三句话:

  (1)x构造函数并指明函数的单调区间及相应的单调性。

  (2)x自变量的大小比较。

  (3)x函数值的大小比较。

  后两个题的过程略。要求学生仿照第(1)题叙述过程。

  例2。比较下列各组数的大小

  (1)x与x;x(2)x与x ;

  (3)x与x。(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出x>1,<1。

  解决后由教师小结比较大小的方法

  (1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)

  (2)x搭桥比较法:x用特殊的数1或0。

  四、巩固练习

  练习:比较下列各组数的大小(板书)

  (1)x与x x(2)x与x;

  (3)x与x;x(4)x与x。解答过程略

  五、小结

  1、的概念

  2、的图象和性质

  3、简单应用

  六、板书设计

  初中数学教案 篇14

  一、教材分析

  幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

  二、教学目标分析

  依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

  [知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。

  [过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。

  [情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。

  三、重、难点分析

  [教学重点]

  (1)幂函数的定义与性质;

  (2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。

  [教学难点]

  (1)指数α的变化对幂函数y=xα(α∈R)性态的影响。

  (2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。

  四、学情与教法分析

  1. 学情分析

  从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

  2. 教法分析

  学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

  3.教学构想

  新课标的要求是通过实例,了解y=x,的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中 α限于在集合{-2,-1,-,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。

  初中数学教案 篇15

  课题:

  对数函数

  (1)——定义、图象、性质目标:

  1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

  2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

  3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

  重点:对数函数的定义、图象、性质

  难点:对数函数与指数函数间的关系

  过程:

  一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数 是分裂次数 的函数,这个函数可以用指数函数 = 表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数 就是要得到的细胞个数 的函数。根据对数的定义,这个函数可以写成对数的形式就是 如果用 表示自变量, 表示函数,这个函数就是 由反函数概念可知, 与指数函数 互为反函数这一节,我们来研究指数函数的反函数对数函数

  二、新课

  1.对数函数的定义:函数 叫做对数函数;它是指数函数 的反函数。对数函数 的定义域为 ,值域为 。

  2.对数函数的图象由于对数函数 与指数函数 互为反函数,所以 的图象与 的图象关于直线 对称。因此,我们只要画出和 的图象关于 对称的曲线,就可以得到 的图象,然后根据图象特征得出对数函数的性质。

  活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理 3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87 表 图象性质定义域:(0,+∞)值域:R过点(1,0),即当 时, 时 时 时 时 在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1) ; (2) ; (3) 分析:此题主要利用对数函数 的定义域(0,+∞)求解。解:(1)由 >0得 ,∴函数 的定义域是 ;(2)由 得 ,∴函数 的定义域是 (3)由9- 得-3 ,∴函数 的定义域是 注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数① ② 解:① ∴ ② ∴

  三、小结:对数函数定义、图象、性质四、作业: 课本第95页 练习 1,2 习题2.8 1,2

  初中数学教案 篇16

  教学目标:

  1.进一步理解指数函数的性质;

  2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

  教学重点:

  指数函数的性质的应用;

  教学难点:

  指数函数图象的平移变换.

  教学过程:

  一、情境创设

  1.复习指数函数的概念、图象和性质

  练习:函数=ax(a>0且a≠1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a>1,则当x>0时, 1;而当x<0时, 1.若0<a<1,则当x>0时, 1;而当x<0时, 1.

  2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a>0且a≠1,函数=ax的图象恒过(0,1),那么对任意的a>0且a≠1,函数=a2x1的图象恒过哪一个定点呢?

  二、数学应用与建构

  例1 解不等式:

  (1) ;(2) ;

  (3) ;(4) .

  小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

  例2 说明下列函数的图象与指数函数=2x的图象的关系,并画出它们的示意图:

  (1) ; (2) ;(3) ;(4) .

  小结:指数函数的平移规律:=f(x)左右平移 =f(x+)(当>0时,向左平移,反之向右平移),上下平移 =f(x)+h(当h>0时,向上平移,反之向下平移).

  练习:

  (1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.

  (2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.

  (3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .

  (4)对任意的a>0且a≠1,函数=a2x1的图象恒过的定点的坐标是 .函数=a2x-1的图象恒过的定点的坐标是 .

  小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

  (5)如何利用函数f(x)=2x的图象,作出函数=2x和=2|x2|的图象?

  (6)如何利用函数f(x)=2x的图象,作出函数=|2x-1|的图象?

  小结:函数图象的对称变换规律.

  例3 已知函数=f(x)是定义在R上的奇函数,且x<0时,f(x)=1-2x,试画出此函数的图象.

  例4 求函数 的最小值以及取得最小值时的x值.

  小结:复合函数常常需要换元来求解其最值.

  练习:

  (1)函数=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;

  (2)函数=2x的值域为 ;

  (3)设a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

  (4)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

  三、小结

  1.指数函数的性质及应用;

  2.指数型函数的定点问题;

  3.指数型函数的草图及其变换规律.

  四、作业:

  课本P71-11,12,15题.

  五、课后探究

  (1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

  (2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

  初中数学教案 篇17

  学习目标:1、掌握EXCEL中公式的输入方法与格式 。

  2、记忆EXCEL中常用的函数,并能熟练使用这些函数进行计算。

  一、知识准备

  1、 EXCEL中数据的输入技巧,特别是数据智能填充的使用 2、 EXCEL中单元格地址编号的规定

  二、学中悟

  1、对照下面的表格来填充

  (1)D5单元格中的内容为 (2)计算“王芳”的总分公式为(3)计算她平均分的公式为 (4)思考其他人的成绩能否利用公式的复制来得到?

  (5)若要利用函数来计算“王芳”的总分和平均成绩,那么所用到的函数分别为 、 。

  计算总分的公式变为; 计算平均分的公式为。 思考:比较两种方法进行计算的特点,思考EXCEL中提供的函数对我们计算有什么好处,我们又得到了什么启示?

  反思研究

  三、 学后练

  1、下面的表格是圆的参数,根据已经提供的参数利用公式计算出未知参数

  1) 基础练习

  (1)半径为3.5的圆的直径的计算公式为 (2)半径为3.5的圆的面积的计算公式为

  2) 提高训练

  (1)能否利用公式的复制来计算出下面两个圆的直径?若不能说明原因,并提出如何修改公式后才能利用公式复制来计算其他圆的直径?

  (2)能否利用公式的复制来计算出下面两个圆的面积?若不能说明原因,并提出如何修改公式后才能利用公式复制来计算其他圆的面积?

  2、根据下面的表格,在B5单元格中利用RIGHT函数去B4单元格中字符串的右3位。利用INT函数求出门牌号为1的电费的整数值,结果置于C5单元格中。

  思考实践提高:根据上面两个问题,我们得到了那些提示?并且将上面的公式与函数进行上机实实践。

  四、 作业布置

  (1)上机完成成绩统计表中总分和平均分的计算; (2)上机完成圆的直径和面积的计算 (3)练习册

  初中数学教案 篇18

  【教材分析】

  利用编辑公式对工作表中的数据进行计算、处理和分析,是吉林教育出版社出版的《初中信息技术》一年级下册中《第六章 数字奥运 尽显风采》

  第二节内容。该教材对利用公式进行数据计算处理(进行公式创建、编辑、复制和自动填充)的教学内容只是安排了对“中国获得夏季奥运会奖牌统计表(1984-2004)”计算的一个简单的例子。其内容安排单一、简单,很难应对现实生活中所面对的对数据进行加、减、乘、除计算。为此,在教学过程中增设了与学生生活实际相关的系列内容(以成就英雄为主题,分别设计了:初学咋练、小有所成、名声大振、声名显赫、成就英雄五个任务组合)进行教学,有意扩充了学生的知识面,提高了学生的对数据的处理能力。

  【学情分析】

  学习本节课之前,学生们学习了EXCEL简单的数据录入等操作,在本课教学中,教师认真结合学生学情,将教学内容设计成“竞赛”“闯关”形式,增强教学趣味性,以激发学生的学习兴趣与热情,并通过演示、指导、学生自主探究和合作学习等形式,让学生逐步掌握本节教学内容。

  【教学目标】

  掌握Excel公式的概念,输入方法以及公式的自动填充的应用、掌握Excel中创建公式的格式; 学会利用EXCEL中的公式计算功能,完成生活中有关数据的计算,能根据具体问题灵活应用公式进行计算; 培养学生互帮互助良好品质、培养学生对现实问题的思考,培养学生学会融于集体,合作学习的态度。

  【教学重点】

  掌握EXCEL中公式的定义、公式的输入、公式的编辑等操作。

  【教学难点】

  公式的创建、公式的格式

  【教法学法】

  任务驱动法 主动探究法 讲解法,演示法,小组合作

  【教学准备】

  计算机教室、任务素材、大屏幕投影

  【课时】

  1课时

  【课型】

  新授课

  【教学过程】

  一、激发兴趣、导入新课(2分钟)

  师:在现实生活中,我们经常遇到对数据进行计算处理的问题,比如学生成绩统计、文艺汇演的成绩、文明班级评选结果统计、奥运会的奖牌统计等等。通常我们都是怎样来计算处理的呢?

  生:踊跃,积极发言,表达自己的解决方法

  师:大屏幕展示任务素材中“中国获得夏季奥运会奖牌统计表(1984——2004)”表格,请同学们用刚才说过的这些方法来计算一下我国的奖牌总数,限时三十秒,看哪位同学算出的最多。

  根据学生完成情况,得出结论:由此可以看出用传统的方法来计算是非常麻烦的,那么在EXCEL中会不会有更好的方法呢?EXCEL是一款用于数据统计和分析的应用软件,实现统计与分析的途径主要是计算,这节课我们就一起来研究一下在EXCEL中如何利用公式对数据进行分析计算。现在我们就开始学习EXCEL中公式的输入。

  二、讲授新课、合作探究

  (一)两个知识点的理解(教师讲解3分钟,其中知识点一利用1分钟简单阐述,知识点二2分钟详细说明)

  1、公式:(简单阐述)

  公式是以对工作表数值进行加法、减法和乘法等运算,公式由运算符、常量、单元格引用值、名称及工作表函数等元素组成。

  运算符用来对公式中的各元素进行运算操作。Excel包含四种类型的运算符:算术运算符、比较运算符、文本运算符和引用运算符。

  其中,算术运算符是我们用得比较多的,它用来完成基本的数学运算,算术运算符为:

  2、EXCEL中输入公式的操作(详细说明)

  输入公式的步骤:

  选定单元格→键入=(等号)→输入公式(如果公式中要引用某单元格的数据,既可用鼠标点击该单元格,也可用手动方法键入该单元格)→按回车键自动进行计算并显示结果。

  特别强调:公式都是以等号开头,等号后是由操作数和数学运算符号组成的一个表达式。

  (二)自主探究 合作学习(20分钟,其中基础任务利用5分钟师生详细完成,任务二到任务五,学生根据自己的情况分配15分钟)

  教师通过网络,下发本课任务素材,然后让学生打开任务素材中“初学咋练”工作表,尝试根据教师的讲解,完成里面的任务一。

  基础任务:完成任务素材中“初学咋练”工作表中任务一。认真观察 “中国获得夏季奥运会奖牌统计表(1984——2004)”表,尝试完成1984年中国获得的奖牌总数,总结归纳操作步骤。

  1.学生总结归纳在EXCEL中计算我国奥运会奖牌总数的步骤。(学生先自主学习,尝试计算,然后总结步骤,教师根据学生总结,整理完善)

  (1)选定需存放奖牌总数的单元格(任务中指定一个单元格)

  (2)输入公式

  (3)回车确定

  启发学生思考:

  在一个单元格中输入公式后,若相邻的单元格中需要进行同类型计算,则可利用公式的自动填充功能来实现。

  方法如下:(教师演示,操作方法)

  (1)选择公式所在的单元格,移动鼠标到单元格的右下角(填充柄)处

  (2)当鼠标指针变为黑十字状时,按住鼠标左键,拖动填充柄经过目标区域

  (3)到达目标区域后,放开鼠标左键,自动填充完毕。

  学生根据教师演示讲解,完成“初学咋练”工作表中任务二。利用自动填充复制公式计算出其他届我国的奖牌总数。

  (设计意图:师生共同完成这个基础任务,总结EXCEL利用公式计算的方法和公式快速填充方法,通过本个任务的完成,让学生掌握EXCEL公式计算的操作方法,为后面的学习打下坚实的基础)

  任务二到任务五,学生通过自主探究或合作学习完成,教师巡视,个别指导。

  任务二:完成任务素材中“小有所成”工作表中的任务

  (设计意图:这个任务,加大了公式计算难度,涉及带括号混合运算,通过本个任务的完成,让学生更加深入的了解EXCEL公式计算的作用和操作方法,同时培养学生学会关心他人)

  任务三:完成任务素材中“名声大振”工作表中的任务。

  初中数学教案 篇19

  教学目标:

  (一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

  (二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

  (三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

  教学重点:

  对数函数的图象和性质

  教学难点:

  对数函数与指数函数的关系

  教学方法:

  联想、类比、发现、探索

  教学辅助:

  多媒体

  教学过程:

  一、引入对数函数的概念

  由学生的预习,可以直接回答“对数函数的概念”

  由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

  问题:1.指数函数是否存在反函数?

  2.求指数函数的反函数.

  ①;

  ②;

  ③指出反函数的定义域.

  3.结论

  所以函数与指数函数互为反函数.

  这节课我们所要研究的便是指数函数的反函数——对数函数.

  二、讲授新课

  1.对数函数的定义:

  定义域:(0,+∞);值域:(-∞,+∞)

  2.对数函数的图象和性质:

  因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

  因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

  研究指数函数时,我们分别研究了底数和两种情形.

  那么我们可以画出与图象关于直线对称的曲线得到的图象.

  还可以画出与图象关于直线对称的曲线得到的图象.

  请同学们作出与的草图,并观察它们具有一些什么特征?

  对数函数的图象与性质:

  图象

  性质(1)定义域:

  (2)值域:

  (3)过定点,即当时,

  (4)上的增函数

  (4)上的减函数

  3.图象的加深理解:

  下面我们来研究这样几个函数:

  我们发现:

  与图象关于X轴对称;与图象关于X轴对称.

  一般地,与图象关于X轴对称.

  再通过图象的变化(变化的值),我们发现:

  (1)时,函数为增函数,

  (2)时,函数为减函数,

  4.练习:

  (1)如图:曲线分别为函数,的图像,试问的大小关系如何?

  (2)比较下列各组数中两个值的大小:

  (3)解关于x的不等式:

  思考:(1)比较大小:

  (2)解关于x的不等式:

  三、小结

  这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

  四、课后作业

  课本P85,习题2.8,1、3

【初中数学教案】相关文章:

初中数学教案06-29

初中趣味数学教案07-01

初中数学教案模板08-10

初中数学教案最新08-23

初中数学教案模板08-05

初中数学教案15篇06-29

初中数学教案(精选15篇)08-12

初中数学教案(精选15篇)06-06

青岛版初中数学教案范文04-11