《重叠问题》说课稿教案

2024-02-25 说课稿

  作为一位不辞辛劳的人民教师,时常要开展教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?下面是小编整理的《重叠问题》说课稿教案,希望能够帮助到大家。

  《重叠问题》说课稿教案 1

  一、教材分析:

  《重叠问题》是青岛版小学数学一年级上册74——75页智慧广场的内容。 本节课是学生在已经认识了10以内的数、掌握了数的顺序、能正确读写、会比较大小,并且熟练掌握10以内加减法的基础上进行教学的。

  本节课的设计目的是从一年级开始向学生渗透画直观图的方法,引导学生从低年级开始初步养成解决问题的策略,为后续学习打下基础,促进学生养成善于思考的好习惯,提高数学素养,激发学生对数学学习的欲望和兴趣,体现数学的价值。

  二、教学目标:

  结合教材特点和学生已有的认知结构、心理特征,制定如下教学目标:

  1.结合具体情境,学习借助直观图解决简单的重叠问题。

  2. 经历独立思考、合作探究的过程,提高思维能力,促进思维发展,形成运用几何直观的方法解决问题的策略,增长学生的聪明才智,发展学生的智力。

  3. 通过活动激发学生学习数学的兴趣和欲望,体验成功的乐趣,产生学好数学的自信心。

  三、教学重难点

  本节课的教学重点是:理解简单的重叠问题的意义及解决问题的计算方 。 教学难点是:理解前面的数量+中间部分+后面数量=总数。

  数了两次的部分是重复的部分,要从总数中去掉

  四、教学模式

  本节课采用合作探究教学模式。主要有:创设教学情境、找出有价值的数学信息、提出有效的数学问题并解决、巩固练习、总结反思四大环节。其中提出问题和解决问题是核心环节,主要是通过学生自主、合作、探索,建立数学模型。 这样的教学模式,强调学生的自主探究与合作的意识,在参与数学活动的过程中去感知和体验,体现“以人为本”的教学理念。

  五、说教学设计:

  我以激发学生的学习兴趣为目的,让孩子在快乐中学习,在学习中感受数学的乐趣,确定本节课的教学设计如下:

  一、创设情境,导入新知

  二、小组合作,探究新知

  三、自主练习,巩固新知

  四、总结反思,深化认知

  一、 创设情境 导入新知

  多媒体出示信息图,让学生说一说观察到了哪些数学信息?

  根据信息,引导学生提出数学问题:

  从前面数花雁排第6,从后面数排第3,一共有多少只大雁呢?

  【设计意图】通过创设生动的情景,让学生更容易理解和接受直观、具体的感性材料,调动起学生自主探索解决问题的热情,为学生理解问题奠定基础。

  二、小组合作,探究新知

  这一行大雁一共有多少只?

  1.猜想:请你猜一猜,这行大雁一共有多少只?

  让学生说说自己的想法,可能会出现8只或9只这两种不同的答案。

  到底一共有8只大雁还是9只呢?

  2.验证:

  我们用什么方法验证呢?

  引导学生说出摆一摆、画一画、数一数、算一算等验证方法。

  下面我们一起先用摆一摆的方法来验证一下到底是几只。

  摆一摆:

  让学生自己动手摆一摆学具:

  (1)引导学生用圆片代替大雁,用三角形代替花雁,边读题,边摆一摆,同桌可以相互讨论交流,教师巡视指导该怎样操作。

  (2)找两名同学到展台上摆一摆,并说一说为什么这样摆?

  (3)课件演示摆一摆。

  “从前面数,它排在第6”,花雁前面摆几只?我们一起来数一数。

  “从后面数,它排在第3”,花雁后面摆几只?

  数一数,这行大雁有几只?

  (4)请同学们再动手摆一摆。

  画一画:

  除了摆一摆,我们还可以画一画进行验证:

  下面用圆片代替大雁,三角代替花雁画一画,看看这一行大雁是多少只? 小组内可以讨论交流,教师巡视指导画法。

  学生汇报的同时教师板书下来。

  回想一下我们是怎样画的?课件演示画一画的方法。

  【设计意图】这一验证过程充分体现了新课标要求第一学段的小学生“经历从实际物体中抽象出简单几何体和平面图形,了解一些简单几何体和常见的平面图形的`要求”同时在摆一摆画一画的过程中可以使小学生在头脑中产生重叠的概念 算一算:

  引导学生根据画出的直观图列出算式解决问题。

  穿花衣服的大雁,从前面数排在第6,从后面数排在第3。数了两次,所以可以这样计算:6+3-1=8(只)

  从图上看穿花衣服的大雁前面有5只,后面有2只,所以可以这样计算:5+1+2=8 (只)

  最后让学生说一说这两种方法,你喜欢哪一种?

  强化学生对算法的理解。

  【设计意图】通过学生的猜一猜,摆一摆,画一画,数一数,算一算等活动, 使学生亲身经历了猜想-----自主探究——合作交流 ——验证的过程, 让学生在活动中找到了解决问题的方法。

  三、自主练习,巩固新知

  练习设计分为三个层次:

  第一层次:基础题

  第二层次:综合题

  第三层次:拓展题

  基础题的设计面向全体学生,使每个学生都能巩固基本的方法和技能。 综合题关注差异,使不同程度的学生有不同的发展。

  拓展题关注发展,使不同层次的学生得到不同程度的发展。

  四、总结反思,深化认知

  我们这节课解决的问题叫做“重叠问题”。(板书课题)

  1.让学生读一读课题,说一说对“重叠”的理解。

  2.我们用什么方法来解决的“重叠问题”呢?

  画图是帮助我们解决问题的一种很好的方法。

  以后在生活中遇到这样的问题,就可以用这个方法来解决。

  【设计意图】概念的形成不是一次完成的,要经过多次的比较、分析与综合。通过各种手段,引导学生总结概念,培养学生归纳总结的能力,加深学生对于概念的理解。

  六、板书设计

  这是我的板书设计,将本节课的主要内容清楚明了的表现出来,重点突出,能帮助学生对所学知识进一步理解和掌握。

  我的说课到此结束,谢谢大家!

  《重叠问题》说课稿教案 2

  教学内容:

  人教版三年级下册第九单元P108例1

  教学目标:

  1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。

  2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。

  教学重难点:

  理解集合图的各部分意义及解决简单问题的计算方法。

  教具、学具:

  课件、带有学生姓名的小贴片。

  教学过程:

  一、问题情境,导入新课

  师:出示下面统计表

  师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?

  生:8+9=17人,师:同意吗?一定吗?

  生:齐说同意、一定。

  师:出示图1集合圈,语文组 数学组

  师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?

  师:相机出示带有17个同学姓名的图片。

  【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】

  二、探究新知

  1、问题的引出

  师:出示例题中的统计表

  师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?

  生:有几个同学重复了。

  生:有三个同学既参加参加了语文小组又参加了数学小组。

  师:刚才这位同学说“重复”是什么意思?

  生:重复,就是一个人参加了两项活动。

  师:在实际生活中你们遇到过这种情况了吗?

  生:遇到过,比如我既参加了象棋小组又参加了绘画小组。

  生:我参加了三个兴趣组。

  师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?

  生:图2。因为图2有重复的部分。

  师:只能用图2来表示来表示重复的关系吗?

  生:两个长方形(正方形、三角形)交叉在一起也行。

  师:谁来说说重复的部分是什么意思?

  生:重复部分就是两项活动都参加人。

  师:同意吗?

  生:同意。

  师:参加语文组的有几个人?参加数学组的呢?

  生:语文组有8人,数学组有9人。

  师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。

  【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】

  2、交流汇报

  师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。

  师:怎样计算参加两个小组的人数一共有多少人?

  生:一共是14人,我是数出来的。

  生:8+9=17 17-3=14

  师:第一个表格为什么直接用8+9=17就算出参加两个小组的.人数,而这一次8+9后还要再减去3呢?

  生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。

  生:第一个表格没有重复参加的,第二个表格有重复参加的。

  师:不管用数的方法还是用算式计算都要注意什么?

  生:不能把重复的三个人多算了一次。

  【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】

  3、明确“韦恩图”各部分表示的意思,感受其的价值。

  师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?

  生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。

  师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。

  师:简单介绍“韦恩图”来历。

  师:在实际生活中,往往提供的信息不会像表格中那样的。

  师:相机把例题呈现在统计表中的学生姓名打乱。

  师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?

  生:用“韦恩图”来表示。

  师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。

  师:你认为在什么样情况下使用“韦恩图”来解决问题呢?

  生:有重复关系的,师:相机板示课题:数学广角——重叠问题。

  【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】

  三、巩固应用,落实“双基”

  1、教材p110练习二十四第1题

  2、教材P110练习二十四第2题

  四、拓展延伸,发展能力

  师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?

  师:请同学读题,并与原例题进行比较

  师:请同学拿出第二组供贴图用的学具片

  师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?

  交流回报:

  生:8+9=17人,我是把两个圆圈分开摆的

  生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。

  生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。

  师:结合学生的口述,相机展示学生的作品

  师:重点引导学生交流结果是9人的集合图各部分之间的关系。

  师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?

  生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。

  生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。

  师:也就是说这道题没有确定语文组和数学组之间的具体关系。

  师:那你认为做这样的题目首先要注意什么?

  生:搞清重复的人数。

  生:在画图时要确定相交的部分应该是几人。

  生:考虑问题要全面些。

  师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?

  生:重复的部分越多,参加两项活动的人数就越少。

  生:要想参加两项活动的人数多最好互不交叉。

  生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。

  师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。

  五、全课总结

  师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策

  略?这一策略以前你用过吗?

  《重叠问题》说课稿教案 3

  教学内容:

  人教版义务教育课程标准实验教科书《数学》三年级下册P108例1及相关练习。

  教学目标:

  1、通过数学活动让学生体会重复现象在生活中的运用,以及解决重复问题的解决策略,理解集合圈的集合思想。

  2、使学生学会借助直观图,利用集合图的思想方法解决简单的实际问题。

  3、体验数学的图形美、简洁美,增强学习数学的情感。

  教学重难点:

  理解集合圈的集合思想,会用集合来解决实际问题。

  教学过程:

  一、创设情境,生成问题

  创设游戏情境,让学生在活动中体验,生成数学问题,先请两生两把椅子玩抢椅子的游戏,发现椅子数和人数一样游戏无法玩?

  再通过加四人选一人的猜拳游戏留下一个人的游戏。学生猜拳,抢椅子。

  二、探索交流,解决问题

  1、质疑

  3位同学抢椅子,4位同学参加了猜拳游戏,请这7位同学站起来。怎么是6个人呢?少了一个人,那位同学哪去啦?

  学生解释,师故作糊涂状,引导多人解释,辩析。

  1、站圈

  师出示呼拉圈。请参加抢椅子的同学站到这里来,参加猜拳游戏的站到另一个圈中。发现一个圈中少了一个人,怎么办呢?

  提出问题,让学生解决。

  等两个呼拉圈交叉后,再请学生解释,明确认识。

  2、画图

  让学生将呼拉圈抬起来,给大家看。这两个圈怎么样了?左边这个圈表示的是什么?右边呢?中间这部分表示什么?

  将它画在黑板上。

  生活中的呼拉圈变成了数学圈。认识各部分表示的意义。

  3、贴名,理解图

  请刚才参加抢椅子的同学将他们的名字贴到相应的位置,参加猜拳游戏的同学也贴。预计会出现两种情况:

  A贴对了。指名解释。

  B贴了两张。怎么样表示才对呢?引导学生理解“重叠”。

  4、理算法

  参加这两项活动的一共有多少人?怎么用算式表示呢?引导学生用多种方法列式,并理解其含义。

  由此引出课题。

  三、巩固应用,内化提高

  1、出示教师课前调查的两幅图,引导学生理解图的含义,区别重叠与不重叠两种情况。(喜欢吃肉与喜欢吃菜的同学名单,分别放在两个集合圈中)

  2、解决动动物园里的.数学问题:你选择哪幅图?为什么?进一步理解重叠现象。

  3、文具店里的数学问题。(看书做)

  4、运动会上的数学问题:我们班参加跳绳比赛的有8人,参加跑步比赛的有6人,参加这两项活动的一共有多少人?你是怎么想的?

  师展示动态集合图,渗透动与不动的观点,拓展学生的思维。

  四、评价小结。

  评价学生表现情况,简单小结。

  《重叠问题》说课稿教案 4

  教学目标

  1、使学生借助直观图体会,利用集合思想解决简单实际问题的基本方法。

  2、使学生掌握解决重叠问题的一些基本策略,体验解决问题策略的多样性。

  3、丰富学生对直观图的认识,发展形象思维。使学生在主动参加数学活动过程中获得成功的体验,提高学生学习数学的兴趣。

  4、培养学生善于观察、善于思考,养成良好的学习习惯。

  教学准备:

  每人白纸两张多媒体课件

  教学过程

  一、探究新知

  (一)、巧妙设题,直观感悟

  喜欢《蓝猫淘气三千问》 周飞 王道浩 许露 李苏影 王涛

  喜欢《红猫蓝兔七侠传》 周飞 王道浩 许露 陈新寒 陈传活 李力

  1、同学们,你们喜欢看动画片吗?(喜欢)你们喜欢哪些动画片?(随意请两三位学生回答)瞧你们这么喜欢看动画片,今天,老师给你们带来了《蓝猫淘气三千问》《红猫蓝兔七侠传》,据我从某个班了解:(出示课件)

  2、收集数据

  师:现在根据这个统计表,我们可以了解到哪些数学信息?

  学生的信息可能有:

  ①喜欢《蓝猫淘气三千问》有5人。

  ②喜欢《红猫蓝兔七侠传》有6人。

  ③两种都喜欢的有3人。

  3、发现问题

  根据这些数学信息,你能提出什么问题?

  引出学生的问题:喜欢这两种动画片的同学一共有几人?

  师:喜欢这两种动画片的同学一共有几人?

  预设:

  A、学生可能说一共有11人,(这时,教师引导:有不同意见吗?)学生可能会说只有8人。(为什么?引出:有3人重复了两次。)

  B、学生可能说一共有8人,(这时,教师故作奇怪的`样子提问:“喜欢《蓝猫淘气三千问》有5人。喜欢《红猫蓝兔七侠传》有6人。一共有11人,还有3人哪里去了?”引出:有3人重复了两次。)

  (二)、引出集合图,加深理解

  在这张表中我们发现周飞、王道浩、许露的名字重复出现了三次,现在你能不能用其他方式重新整理名单,更清楚地来表示出喜欢《蓝猫淘气三千问》有5人,喜欢《红猫蓝兔七侠传》有6人,两种都喜欢的有3人,并且每个人的名字只能出现一次。(学生设计时,教师要注意筛选。)

  展示各个小组的创作,听听学生的理由。

  (如果有出现韦恩图最好,并且直接问各部分的意义。没有的话用课件直接出示韦恩图,讲述故事)

  师:在很久以前也有一个人和我们同学一样会动脑筋,他就是英国的逻辑学家韦恩。韦恩最早想出了用这样的图来表示重叠,于是后人就用他的名字来命名,称之为韦恩图。如果你们比韦恩早出世,那这幅图就要用你们的名字来命名了。

  (课件演示) 先出示两个独立的集合圈:

  喜欢《蓝猫淘气三千问》 喜欢《红猫蓝兔七侠传》

  (课件演示两圆合并)

  课件演示两圆合并

  • 相关推荐

【《重叠问题》说课稿教案】相关文章:

《重叠问题》说课稿12-22

重叠问题说课稿3篇07-11

数学《重叠问题》教案设计06-17

《重叠问题》教学反思06-09

重叠问题教学反思07-09

《重叠问题》教学反思范文05-08

数学《重叠问题》教学反思06-09

集合—重叠问题的教学与反思07-09

数学广角《重叠问题》教学反思08-15

《数学广角—重叠问题》教学反思09-21