作为一位无私奉献的人民教师,时常要开展教学设计的准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么什么样的教学设计才是好的呢?下面是小编精心整理的圆的面积教学设计,欢迎阅读与收藏。
圆的面积教学设计1
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。 教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
一、回顾旧知,引出新知
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法
二、创设情境,提出问题
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的'数学问题。
3、学生回答,老师板书(圆的面积)
三、探究思考,解决问题
1、让学生估计圆的面积大小
(1)与同桌说一说你是怎么估的
(2)汇报,
(3)老师引导有没有更好的方法
2、探索圆面积公式
(1)学生操作
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用
《圆的面积》教学反思
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会
在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?
圆的面积教学设计2
教学内容:
义务教育课程标准实验教科书第十一册P67-68
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。 师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
[设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。 师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的 发生了变化,但是它们的 不变?
②转化后长方形的长相当于圆的 ,宽相当于圆的 ? ③你能从计算长方形的`面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。 师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?) [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m ,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积= 长×宽
= 半径
S = πr ×r
=πr2
圆的面积教学设计3
一、教材内容分析
人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。
二、学情分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。
三、教学目标知识与技能
1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。
2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观
让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的`教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和
教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。
五、教学准备
教学用具,圆形卡片学具
六、教学过程
关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流
一、创设情境,揭示课题
1,创设情境
学校的花坛的半径为10米,我们能求出它的面积吗?
2,揭示课题
为了解决这个问题这节课我们一起学习“圆的面积”好不好?
板书:圆的面积
3,说一说
师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?
生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。
二、动手操作,实践探究
1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法
2、动手操作,尝试转化
1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?
2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导
3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)
4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?
3、探究联系,推导公式
现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?
1),猜测,再一次观察老师的示范
2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品
3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。
4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。
5),观察,小组讨论得出公式:(板书)
长方形的面积 = 长 × 宽
圆的面积 = 周长的一半 × 半 径
S =πr ×r = πr2
三、运用公式,解决问题
1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识
2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。
四、课堂小结
(一)组织交流
回顾一下这节课我们学习的内容。
(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(二)总结
平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、
圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!
七,板书设计圆的面积(1) 长方形的积 = 长 × 宽
圆的面积 = 周长的一半×半 径
S = πr×r = πr2 八、教学评价设计
在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。
《圆的面积》教学反思
蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面
圆的面积教学设计4
教学目标:
1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。
3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。
教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。
教学难点:理解圆的面积公式的推导过程。
教学准备:课件、圆形白纸、剪刀。
教学过程
一、创设情景,引入新课
1、出示主题情景图:
①从图中你获得哪些数学信息?
②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?
2、说一说:什么叫圆的面积?
3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)
【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。
二、合作交流,探索新知
1、回顾旧知:
回顾以前学过的平面图形面积公式是如何推导出来的?
指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。
【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。
2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?
3、合作探究:
(1)猜想
(2)动手操作,验证猜想。
(3)汇报交流,展示成果(分层展示学生研究成果)。
【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的'数学思想和方法,培养学生的迁移能力,发展学生的空间观念。
4、借助网络画板制作的动态课件展示圆面积的推导过程。
展示不同的等份数拼成不同的平行四边形,感受极限的思想。
【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。
5、推导圆面积公式。
①比较转化后的图形与圆,你发现了什么?
②全班交流,根据学生叙述板书:
长方形面积= 长 × 宽
圆的面积 =圆周长的一半 × 半径
=Лr × r
=Лr
6、小结:圆的面积计算公式: S =Лr
【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。
7、知识应用、内化提高
(1)、 求下列圆的面积。(只列式不计算)
r=3cm
(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?
(1) 认真读题,理解题意。
(2) 你认为怎样解决这个问题?
(3) 学生尝试独立计算。
(4) 汇报解答过程及结果,集体评价。
【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。
四.联系生活、拓展延伸
1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?
2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?
3、求下列圆的周长和面积。
r=2cm
4、求半圆的面积。
r=4cm
【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。
5、回顾整理,全课总结
今天我们学到了哪些新知识?你有哪些收获?
【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。
圆的面积教学设计5
目标预设:
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程:
一、引导估计,初步感知。
1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?
2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽
↓↓↓
圆的面积=∏rr
=∏r2
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
三、应用公式,解决问题
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
四、巩固练习
1、练习十九1求课始出示的光盘的面积
2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?
五、这节课你有什么收获?你认为重点的
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
六、课堂作业
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
圆的面积是多少平方厘米?
反思:
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的'面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
圆的面积教学设计6
教学内容分析:
圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。
学生情况分析:
小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
【教学目标】:
1.认知目标
使学生理解圆面积的.含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2.过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3.情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:理解圆的面积计算公式的推导。
【教学准备】:相应;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的范围是一个什么图形吗?
生:是一个圆形。
师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1.渗透“转化”的数学思想和方法。
师:关于圆的面积你想了解什么?
(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2.演示揭疑。
师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]
3.学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?
(再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.教学例1。
如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?
要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)
我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!
师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(出示第三题)
3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?
分析题意后学生独立完成(组织交流,评价反馈)
同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?
4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
四、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?
知道哪些条件就可求圆的面积?
(知道半径、直径或是周长)
知道半径:S=πr2
知道直径:S=π(d÷2)2
知道周长:S=π(C÷π÷2)2
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
五、课后延伸
圆除了转化为长方形,还能转化为什么图形呢?
板书设计:
长方形的面积 = 长 × 宽
圆的面积 =圆周长的一半 × 半径
S = πr × r
= πr2
圆的面积教学设计7
教学内容:人教版六数上第66页、67页
教学目标:
1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.
2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的`,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
圆的面积教学设计8
教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:
知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。
能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。
情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:掌握并理解圆面积的计算公式。
教学难点:引导学生用多种方法推导概括圆面积公式。
教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。
教学过程:
一、创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
二、回顾旧知,孕优新知
在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)
以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。
三、研究新知,加深理解
1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)
出示自学提纲:
(1)什么叫圆的面积?
(2)书上是怎样推导圆面积的?
(3)为什么是近似的平行四边形?
2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。
出示小组合作学习提纲:(指生读)
(1)你摆的是什么图形?
(2)你摆的图形的面积与圆的面积有什么关系?
(3)所摆图形的各部分相当于圆的什么?
(4)你是如何推导出圆的面积的?圆的面积公式是什么?
(5)你能不能转化成其它图形推导圆面积公式?
(你想把圆转化成什么图形)
3、哪个小组愿意把你们的研究成果给大家展示一下?
请大家关注同学们的发言,从中你一定会受到启发或发现问题。
小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)
4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)
如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?
好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)
(2)如果给出直径你会算吗?出示例1。(指生读题)
四、巩固深化,实际应用
(1)不错,那老师要看看谁的.反映最灵活计算能力最强(口答:给半径、直径求面积)。
(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)
(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?
(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?
五、发散思维,拓展知识
小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?
六、总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
圆面积教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的
自主探究创造条件。
1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实
圆的面积教学设计9
“圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
本节课分四个环节来设计教学。
第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。
第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。
(一)公式的推导
1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。
2.推导圆面积公式
第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?
第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的`,也就是说,拼成的长方形的面积等于圆的面积。
第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。
3.小结
让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。
4.阶段性练习
a.看标有半径的圆,求面积。
b.已知半径求面积。(练习时交待运算顺序。)
(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。
第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。
第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
圆的面积教学设计10
【教学内容】:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
【教学目标】:
知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
【教具准备】:
多媒体课件,圆片等。
【教学方法】:自主探究法
【教学过程】:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
3、圆的面积计算公式的推导。
小组合作讨论以下问题:
a、拼成的近似长方形的面积和圆的面积有什么关系?
b、长方形的长与圆的周长有什么关系?
c、长方形的宽与圆的半径有什么关系?
d、你能找出圆的面积计算方法吗?
长方形的面积=长×宽,
所以圆的面积=()×()=()
学生在小组内积极讨论,探究、分析,并将结果汇报。
长方形的长是圆周长的一半,长方形的.宽是半径(r)
因为长方形的面积=长×宽
所以圆的面积=∏r×r=r2
齐读公式S=∏r2强调r2=r×r(表示2个r相乘)
同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.
三、巩固运用、形成技能
1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?
2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?
(1)课件出示例1
(2)学生独立审题
(3)教师板演解答过程.
3、求下面圆的面积r=3md=5cm
①学生独立完成
②集体核对时,强调要先算平方再算乘法。
4、判断题(课件出示)
5、拓展练习:机动题
小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??
四、课堂总结、深化认知:这节课,你有哪些收获?
五、作业:练习十六2.4题.
附:板书
圆的面积
长方形面积=长×宽
↓↓↓
圆的面积=圆周长的一半×半径
=∏r×r
=∏r2
例1:r:20÷2=10(m)
S:3.14×102=314(m2)
答:它的面积是314m2。
圆的面积教学设计11
一、教材内容:
本节课内容是求圆的面积
二、教学目标:
知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、
能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三、教学重点难点:
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四、教学流程
1、复习迁移,做好铺垫
师问:
(1)长方形面积公式
(2)平行四边形面积公式
师:平行四边形面积公式的求法是借住谁来推导出来的?
2、创设情景,引入课题
用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?
问题:
(1)小牛能够吃草的最大面积是一个什么图形?
(2)如何求圆的面积呢?
3、师生互动,探索新知
(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?
(2)让学生动手操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。
(3)让学生转化的过程进行展示。(略)(多组学生展示)
(4)用多媒体进行验证。
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(5)引导归纳:
思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
思考2:长方形的'长、宽与圆有什么关系呢?
再次多媒体展示动画。
师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,
即:圆的面积=长方形的面积=长×宽=πr×r
得到:s圆=πr×r
师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。
4、实际应用,强化新知
(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?
师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。
(2)出示例题:
例题1:已知一个圆的直径为24分米,求这个圆的面积?
a、让学生独立练习,b、指名板演,c、师生评议。
例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)
a、学生独立练习,b、指名板演,c、师生订正。
师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。
5、巩固练习,深化新知
1、判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少
6、课内总结,梳理新知
师:(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
7、布置作业
圆的面积教学设计12
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的'周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
圆的面积教学设计13
【教学内容】
16页-18页圆的面积
【教学目标】
知识与技能:
(1)、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
(2)、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
过程与方法:
通过割补、拼组的方法探究圆面积的计算方法。
情感、态度与价值观:
在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
【教学重点】经历圆面积计算公式的推导过程,掌握圆面积计算公式。
【教学难点】理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。
【教具准备】PPT课件,圆公式推导演示器。
【学具准备】等分好的圆形纸片。
【教学时间】一课时。
【教学过程】
一、基本训练。
1、复习圆的有关知识。
2、复习圆周长的计算公式。
二、问题情境。
课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?
学生观察并讨论,然后指名回答。
预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。
预设2:这个圆形的半径就是绳子的距离,也就是5米。
预设3:这个圆形的中心就是木桩所在的地方。
师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?
羊能吃到草的最大范围就是这个圆形的面积。
师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)
三、建立模型。
1、认识圆的面积
师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?
出示结语:圆所占平面的大小叫做圆的面积
[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]
2、估算圆的面积
(1)、投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
(2)、指明反馈估算结果,并说明估算方法及依据。
①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;
②、我是用数方格的方法来估计的.。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
[设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]
3、积极动脑,讨论推导方法。
回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的? ——引导转化
[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]
4、小组合作,推导公式
师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。
(1)、操作感知。
操作活动一:
让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)
问题:拼成后像什么图像?
②、操作活动二:
让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)
(2)、讨论、交流。
通过剪拼,你发现了什么?(把圆等分的份数越多,拼成的图形越接近平行四边形或长方形。)
(3)、推导圆的面积计算公式。
学生讨论并回答:(课件演示推导过程)
5、应用圆的面积公式解决问题。(解决情景图中的问题)
[设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]
四、解释应用。
1、口答:(出示课件:)
2、计算下面圆的面积。(出示课件)
3、列式计算。
(1)半径2米的圆的面积是多少平方米?
(2)直径2米的圆的面积是多少平方米?
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、回顾小结。
本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?
作业布置和板书设计(略)
圆的面积教学设计14
教学目标:
知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。
教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
教学过程:
一、创设情境,提出问题。
1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?
2. 这个圆形的面积指的是哪部分呢?
3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)
二、探究思考,解决问题。
1.请大家估计半径为5米的圆面积大约是多大?
2.用数方格的方法求圆面积大小
①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?
2.那么圆形的面积可由什么图形面积得来呢?
3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?
4.同学们操作,教师巡视.
5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?
6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。
①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的'高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
7用字母怎么表示圆面积公式呢?
四、应用圆面积公式
1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
2.第18页第1题
学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。
3. 第18页第2题
让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。
板书设计:
圆的面积
平行四边形面积=底×高,
圆形面积公式=圆周长的1/2×半径
圆形面积公式=圆周率圆×半径2
圆的面积教学设计15
教学内容:
新人教版数学六年级上册第67—68页,圆的面积。
教学目标:
1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。
2、经历圆的面积计算公式的推导过程,体会转化的思想方法。
3、培养认真观察的习惯和自主探究、合作交流的能力。
教学重难点:
1、运用圆的面积计算公式解决实际问题。
2、理解圆的面积计算公式的推导过程。
教学准备:多媒体课件
教学方法:自主探究,合作交流
教学过程:
一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。
二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)
三、探索新知
(一)复习,平面图形面积的计算方法。
(二)探索圆面积的计算方法
1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的'面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。
(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。
3、在图形的拼凑与转化中,同时观察与思考以下问题。
a、拼凑中,圆在转化成什么图形?
b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?
4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2
5、学生齐读公式
S= πr2
教师强调r2= r × r(表示2个r相乘)
(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:
1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,
3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例
1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?
2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。
(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。
2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。
3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。
四、课堂总结:这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。
五、作业布置:
教材第71页,练习十五,第1题~第4题。
圆的面积教学设计16
一、学习目标:
1、通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能利用公式进行简单的面积计算,会解决简单的实际问题。
3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
重点:
圆的面积公式的推导及应用公式计算。
难点:
圆面积公式的推导过程。
二、教学准备:
教学课件
分成不同等份的圆形卡纸、纸板、胶棒
三、教学过程:
(一)、复习铺垫,导入新课:
1、看到老师手中的圆,你能想到有关圆的什么知识?
学生汇报。
2、你们还想知道圆的什么知识?
学生交流。
3、那你知道什么是圆的面积吗?
学习圆的面积的概念。
请学生到台前比划比划。
4、你已经会计算哪些平面图形的面积了?打开练习本写一写。
全班反馈。
师课件出示图形及公式。
5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。
学生汇报交流,教师课件演示。
回忆平行四边形面积计算公式的推导过程。
高宽
6、总结方法:这些图形面积公式的推导过程有什么共同点?
预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。
师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?
师板书:转化法
(二)、利用转化,推导公式:
1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
学生操作。
2、师:谁能告诉老师你们小组把圆转化成了什么图形?
生到台前展示。
预设:生1:我们小组把圆转化成一个近似的`长方形。生2:我们小组把圆转化成一个近似的平行四边形。
师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。
师板书:操作法
3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
预设:生1:平均分的份数越多,拼成的图形越接近于长方形。
生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。
(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?
(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?
(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?
小组同学之间互相说说推导过程。
5、全班演示、汇报:
学生到台前演示交流。
(1)把圆16等分拼成近似的平行四边形。
(2)把圆32等分拼成近似的长方形。
(=(r)
①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。
②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。
教师课件演示。组织学生进行语言表述。
(三)、认真练习,巩固新知:
1、师:计算圆的面积一定要有什么条件?学生交流。
2、课件出示练习题:
(1)求下面各圆的面积。
r= 3厘米
d= 2分米
C= 12。56米
(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)
(3)圆形花坛的直径20m,它的面积是多少平方米?
拓展练习:
一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。
(1)这头奶牛最多可吃掉多大面积的草?
(2)奶牛吃不到的草坪的面积有多大?
四、板书设计:
学习方法:
转化法
长方形面积=长×宽
操作法↓ ↓
圆的面积=圆的周长的一半×圆的半径
化曲为直S = πr × r
平行四边形面积=底×高
↓ ↓
圆的面积=圆的周长的一半×圆的半径
S = πr × r
五、教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
(一)、重视自主探究,促进合作交流。
让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
(二)、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。
(三)、练习设计适当,由浅入深地巩固新知。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
圆的面积教学设计17
教学内容:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
教学目标:
知识与技能:
让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
教学难点:
引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教具准备:
多媒体课件,圆片等。
教学方法:
自主探究法
教学过程:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的'面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:
①你们想通过什么方法来推导圆的面积计算公式?
②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
圆的面积教学设计18
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具准备:
等分圆教具。
学具准备:
分成十六等分的圆形纸片。
教学过程:
一.谈话导入新课
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?
生:男生涂的圆大,女生涂的圆小。师:你们所说的'大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
生:男同学涂的面积大。
三.探究合作,推导圆的面积公式
1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
圆的面积教学设计19
教学内容浙教版小学数学第十一册教材P141—143、例1
教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。
学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。
教学目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能够利用圆面积公式进行计算。
3.培养学生动手操作、观察分析、概括推理的能力。
教学重点圆面积计算公式的推导和利用公式进行正确计算。
教学难点极限思想的渗透与圆面积公式的推导过程。
教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等
教学过程
一、创设情境
1.播放录像:美丽的校园景色、各种形状的花坛。
问:你能计算出它们的占地面积吗?
2.媒体演示(从各种形状的花坛中提炼出下面的图形)。
(1)学生说出这些图形的面积计算公式。
(2)用什么方法推导出三角形面积计算公式的?
教师板书:
剪拼
要学的图形 已学的图形
转化
3.媒体出示圆形。
今天要学习圆的另一个知识,就是圆占平面的.大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)
(板书课题:圆的面积)
二、公式推导
1.提出问题,制定方案
(1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?
(2)小组汇报:
a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。
b.面临的困难:如何曲线变直线。
2.操作实验,分析问题
(1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。
(2)交流汇报。
①学生汇报剪拼过程,同时教师贴示。
②观察思考(教师有意选取一组剪拼成长方形的来交流)
a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?
b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?
(教师媒体演示)
c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?
d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?
3.推导公式,解决问题
(1)观察讨论
当圆转化成近似长方形时,你们发现它们之间有什么联系?
(2)学生填实验报告。
(3)学生交流汇报推导过程。
(4)观看课件演示过程,并请同桌两位同学互说一次。
三、公式应用
1.简介千古绝技:中国古代数学家的割圆术。
公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……
2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。
3.根据下面所给的条件,求圆的面积。
(1)直径10厘米(2)周长12。56
(生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)
四、课堂总结
1.这节课你学会了什么?
2.这节课你有什么感受?
五、课外拓展
1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?
2.已知正方形的面积是25平方厘米,求圆的面积。如图:
3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)
板书设计
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
(周长的一半)
剪拼
要学的图形 已学的图形
转化
圆的面积教学设计20
教学目标
1.知识与技能
⑴使学生能根据具体条件,比较灵活地计算圆的面积。
⑵使学生认识圆环,学会求圆环面积的计算方法。
2.过程与方法
培养学生主动探究、合作交流、解决问题的方法和能力。
3.情感态度与价值观
培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。
教学重点、难点
求圆环面积的计算方法。
教学过程
一、情景启发,明确目标
1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积
简单介绍圆环的形成。
2.课件展示:生活中的圆环,感受生活美。
3.复习:圆的.面积怎样计算呢?
(1)、已知圆的半径为2cm,求圆的面积。
(2)、已知圆的直径为6cm,求圆的面积。
4.简单介绍圆环的相关名称及关系:
5.请找出下面圆环的内圆半径(r)或外圆半径(R):
二、合作探究,达成目标
大家动笔算一算。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
圆环面积=外圆面-内圆面积
3.14×62 - 3.14×22 3.14×(62 – 22)
= 3.14×36 - 3.14×4 = 3.14×(36 – 4)
= 113.04 – 12.56 = 3.14×32
= 100.48(cm2)= 100.48(cm2)
答:它的面积是100.48cm2.
比较、分享。求环形的面积,你喜欢那种方法?
S环=πR2-πr2 S环=π(R2-r2)
三、变式练习,检测目标
1.填空:
2.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其它地方是草坪。草坪的占地面积是多少?
3.14×(50÷2)2-3.14×(10÷2)2
=3.14×252-3.14×52
=3.14×625-3.14×25
=1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]
=1884(m2)= 3.14×[252-52]
= 3.14×[625-25]
= 3.14×600
=1884(m2)
答:草坪的占地面积是1884m2.
3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?
外圆半径:1+3=4(m)
环形面积:3.14×(4-3)
=3.14×(16-9)
=3.14×7
=21.98(m)
答:甬路的占地面积是21.98m2.
4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积
3.14×[(18.84÷3.14÷2)2-(4÷2)2]
=3.14×[32-22]
=3.14×[9—4]
=3.14×5
=15.7(cm2)
答:环形的面积是15.7cm2。
四、评讲总结,升华目标
这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。
1、什么样的图形是圆环。
2、怎样计算圆环的面积。
五、课堂达标:解决问题
1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?
2.天安门广场前面有一个大型喷泉,喷泉的半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元
外圆半径:4+3=7(m)
环形面积:3.14×(7-3)
=3.14×(49-9)
=3.14×40
=125.6(m)
答:鲜花所占的面积有125.6m 。
3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)
(1)、大半圆的面积
3.14×[(2+4)÷2]2÷2
=3.14×9÷2
=14.13(cm2)
(3)、小半圆的面积
3.14×(2÷2)2÷2
=3.14×1÷2
=1.57(cm2)
答:阴影的面积是6.28cm2.
六、布置作业
1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?
2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。
3、计算下图涂色部分的面积。(单位:厘米)
七、课后反思
1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。
2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。
【圆的面积教学设计】相关文章:
圆的面积教学设计03-30
《圆的面积》教学设计02-07
圆的面积教学设计04-05
圆的面积教学设计09-15
《圆的面积》的教学设计07-16
《圆的面积》数学教学设计08-15
最新圆的面积教学设计05-27
圆的面积教学设计模板06-29
小学《圆的面积》教学设计08-09
圆的面积教学设计教案09-30